Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 4/2019

21.01.2019

Capacitive humidity sensing using a metal–organic framework nanoporous thin film fabricated through electrochemical in situ growth

verfasst von: M. S. Hosseini, S. Zeinali

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The preparation of nanoporous thin film of metal–organic framework (MOF), Cu–BTC [1,3,5-benzenetricarboxylate or trimesate (BTC)], on the copper plate electrode as dielectric layer of the capacitive sensor was achieved by electrochemical in situ synthesis and film growth. An ionic liquid (IL), 1-methyl-3-octylimidazolium chloride as conducting salt, was used and aid synthesis in the electrochemical synthesis procedure. The structure and morphology of MOF film were properly characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction analysis and BET techniques. The fabricated sensor was used for the humidity measurement at ppm level using the parallel plates’ capacitive sensor structure. Capacitance variations in the presence of humidity at concentration range of 20–100 ppm was investigated using the fabricated sensor. The performances of the sensor have been examined by measuring the capacitance changes using a LCR meter [inductance (L), capacitance (C), and resistance (R)]. Variations of capacitance versus concentration were linear in the range of humidity concentrations which was used here. Sensitivity of the fabricated sensor was 1.13 pF/ppm. Limit of detection (LOD) of the fabricated sensor calculated as low as 5.45 ppm. n-Hexane and toluene vapors as nonpolar analytes were used to investigate the selectivity of the sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Boudaden, M. Steinmaßl, H. Endres, A. Drost, I. Eisele, C. Kutter, P. Muller, Polyimide-based capacitive humidity sensor. Sensors 1, 1516 (2018)CrossRef J. Boudaden, M. Steinmaßl, H. Endres, A. Drost, I. Eisele, C. Kutter, P. Muller, Polyimide-based capacitive humidity sensor. Sensors 1, 1516 (2018)CrossRef
2.
Zurück zum Zitat M. Pal, D. Saha, D.K. Ghara, Nanoporous ɣ-alumina based novel sensor to detect trace moisture in high temperature and high pressure environment. Sens. Actuators B 222, 1043–1049 (2016)CrossRef M. Pal, D. Saha, D.K. Ghara, Nanoporous ɣ-alumina based novel sensor to detect trace moisture in high temperature and high pressure environment. Sens. Actuators B 222, 1043–1049 (2016)CrossRef
3.
Zurück zum Zitat X.J. Li, L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)CrossRef X.J. Li, L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)CrossRef
4.
Zurück zum Zitat Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)CrossRef Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)CrossRef
5.
Zurück zum Zitat F. Hossein-Babaei, P. Shabani, A gold/organic semiconductor diode for ppm-level humidity sensing. Sens. Actuators B 205, 143–150 (2014)CrossRef F. Hossein-Babaei, P. Shabani, A gold/organic semiconductor diode for ppm-level humidity sensing. Sens. Actuators B 205, 143–150 (2014)CrossRef
6.
Zurück zum Zitat T. Islam, A.T. Nimal, U. Mittal, M.U. Sharma, A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175–625 ppm. Sens. Actuators B 221, 357–364 (2015)CrossRef T. Islam, A.T. Nimal, U. Mittal, M.U. Sharma, A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175–625 ppm. Sens. Actuators B 221, 357–364 (2015)CrossRef
7.
Zurück zum Zitat T. Islam, L. Kumar, S.A. Khan, A novel sol–gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5–25 ppm. Sens. Actuators B 173, 377–384 (2012)CrossRef T. Islam, L. Kumar, S.A. Khan, A novel sol–gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5–25 ppm. Sens. Actuators B 173, 377–384 (2012)CrossRef
10.
Zurück zum Zitat S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014)CrossRef S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014)CrossRef
11.
Zurück zum Zitat T. Mlsna, S. Dissanayake, C. Vanlangenberg, S.V. Patel, Conducting absorbent composite for parallel plate chemicapacitive microsensors with improved selectivity. Sens. Actuators B 206, 548–554 (2015)CrossRef T. Mlsna, S. Dissanayake, C. Vanlangenberg, S.V. Patel, Conducting absorbent composite for parallel plate chemicapacitive microsensors with improved selectivity. Sens. Actuators B 206, 548–554 (2015)CrossRef
12.
Zurück zum Zitat H.M. Heitzer, T.J. Marks, M.A. Ratner, Computation of dielectric response in molecular solids for high capacitance organic dielectrics. Acc. Chem. Res. 49, 1614–1623 (2016)CrossRef H.M. Heitzer, T.J. Marks, M.A. Ratner, Computation of dielectric response in molecular solids for high capacitance organic dielectrics. Acc. Chem. Res. 49, 1614–1623 (2016)CrossRef
13.
Zurück zum Zitat Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, S. Khasan, Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013)CrossRef Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, S. Khasan, Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013)CrossRef
14.
Zurück zum Zitat L. Sun, Y. Liu, J. Zhang, F. Xu, T. Zhang, W. You, Y. Zhao, J. Zeng, Z. Cao, D. Yang, Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Cryst. Growth Des. 8, 3127–3129 (2008)CrossRef L. Sun, Y. Liu, J. Zhang, F. Xu, T. Zhang, W. You, Y. Zhao, J. Zeng, Z. Cao, D. Yang, Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Cryst. Growth Des. 8, 3127–3129 (2008)CrossRef
15.
Zurück zum Zitat B. Bahreyni, A.H. Khoshaman, Application of metal organic framework crystals for sensing of volatile organic gases. Sens. Actuators B 162, 114–119 (2012)CrossRef B. Bahreyni, A.H. Khoshaman, Application of metal organic framework crystals for sensing of volatile organic gases. Sens. Actuators B 162, 114–119 (2012)CrossRef
16.
Zurück zum Zitat M.D. Allendorf, V. Stavila, A.A. Talin, MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014)CrossRef M.D. Allendorf, V. Stavila, A.A. Talin, MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014)CrossRef
17.
Zurück zum Zitat M.D. Allendorf, T. By Scott, J.A. Meek, Greathouse, Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)CrossRef M.D. Allendorf, T. By Scott, J.A. Meek, Greathouse, Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)CrossRef
18.
Zurück zum Zitat D. Liu, W. Zhang, H. Huang, Q. Yang, Y. Xiao, Q. Ma, C. Zhong, A new metal–organic framework with high stability based on zirconium for sensing small molecules. Microporous Mesoporous Mater. 171, 118–124 (2013)CrossRef D. Liu, W. Zhang, H. Huang, Q. Yang, Y. Xiao, Q. Ma, C. Zhong, A new metal–organic framework with high stability based on zirconium for sensing small molecules. Microporous Mesoporous Mater. 171, 118–124 (2013)CrossRef
19.
Zurück zum Zitat M. Allendorf, L.E. Kreno, K. Leong, O.K. Farha, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)CrossRef M. Allendorf, L.E. Kreno, K. Leong, O.K. Farha, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)CrossRef
20.
Zurück zum Zitat J.K. Fischer, P. Sippel, D. Denysenko, P. Lunkenheimer, D. Volkmer, A. Loidl, Metal-organic frameworks as host materials of confined supercooled liquids. J. Chem. Phys. 143(15), 154505 (2015)CrossRef J.K. Fischer, P. Sippel, D. Denysenko, P. Lunkenheimer, D. Volkmer, A. Loidl, Metal-organic frameworks as host materials of confined supercooled liquids. J. Chem. Phys. 143(15), 154505 (2015)CrossRef
21.
Zurück zum Zitat M.G. Campbell, M. Dinca, Metal–organic frameworks as active materials in electronic sensor devices. Sensors 17, 1108 (2017)CrossRef M.G. Campbell, M. Dinca, Metal–organic frameworks as active materials in electronic sensor devices. Sensors 17, 1108 (2017)CrossRef
22.
Zurück zum Zitat S. Qiu, J. Liu, F. Sun, F. Zhang, Z. Wang, R. Zhang, C. Wang, In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing. J. Mater. Chem. 21, 3775 (2011)CrossRef S. Qiu, J. Liu, F. Sun, F. Zhang, Z. Wang, R. Zhang, C. Wang, In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing. J. Mater. Chem. 21, 3775 (2011)CrossRef
23.
Zurück zum Zitat S. Qiu, G. Zhu, H. Guo, I.J. Hewitt, Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646–1647 (2009)CrossRef S. Qiu, G. Zhu, H. Guo, I.J. Hewitt, Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646–1647 (2009)CrossRef
24.
Zurück zum Zitat R.A. Fischer, A. Betard, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012)CrossRef R.A. Fischer, A. Betard, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012)CrossRef
25.
Zurück zum Zitat R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, D.E. De Vos, Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580–2582 (2009)CrossRef R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, D.E. De Vos, Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580–2582 (2009)CrossRef
26.
Zurück zum Zitat Z. Li, R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang, Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sens. Actuators B 168, 156–164 (2012)CrossRef Z. Li, R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang, Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sens. Actuators B 168, 156–164 (2012)CrossRef
27.
Zurück zum Zitat W.S. Ahn, S.H. Kim, S.T. Yang, J. Kim, Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethyl urea. Bull. Korean Chem. Soc. 32, 2783 (2011)CrossRef W.S. Ahn, S.H. Kim, S.T. Yang, J. Kim, Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethyl urea. Bull. Korean Chem. Soc. 32, 2783 (2011)CrossRef
28.
Zurück zum Zitat J. Dong, L. Liu, H. Wei, L. Zhang, J. Li, Ionothermal synthesis of the metal-organic framework compound Cu3(BTC)2. Stud. Surf. Sci. Catal. 174, 459–462 (2008)CrossRef J. Dong, L. Liu, H. Wei, L. Zhang, J. Li, Ionothermal synthesis of the metal-organic framework compound Cu3(BTC)2. Stud. Surf. Sci. Catal. 174, 459–462 (2008)CrossRef
29.
Zurück zum Zitat J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191–2198 (2004)CrossRef J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191–2198 (2004)CrossRef
30.
Zurück zum Zitat M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)CrossRef M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)CrossRef
31.
Zurück zum Zitat K.S. Rajan, L. Brinda, J. Bosco Balagura, Rayappan, Synthesis and characterization of MOF-199: a potential sensing material. J. Appl. Sci. 12, 1778–1780 (2012)CrossRef K.S. Rajan, L. Brinda, J. Bosco Balagura, Rayappan, Synthesis and characterization of MOF-199: a potential sensing material. J. Appl. Sci. 12, 1778–1780 (2012)CrossRef
32.
Zurück zum Zitat S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes Lopez-Nunez, A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H.I. Beltran, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)CrossRef S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes Lopez-Nunez, A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H.I. Beltran, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)CrossRef
33.
Zurück zum Zitat MdaS. Pinto, C. Augusto Sierra-Avila, J.P. Hinestroza, In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19, 1771–1779 (2012)CrossRef MdaS. Pinto, C. Augusto Sierra-Avila, J.P. Hinestroza, In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19, 1771–1779 (2012)CrossRef
34.
Zurück zum Zitat E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultrathin flexible capacitive humidity sensor. Sens. Actuators B 4, 302–307 (2009)CrossRef E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultrathin flexible capacitive humidity sensor. Sens. Actuators B 4, 302–307 (2009)CrossRef
Metadaten
Titel
Capacitive humidity sensing using a metal–organic framework nanoporous thin film fabricated through electrochemical in situ growth
verfasst von
M. S. Hosseini
S. Zeinali
Publikationsdatum
21.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 4/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-00652-8

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Science: Materials in Electronics 4/2019 Zur Ausgabe

Neuer Inhalt