Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

07.10.2020

Capacity Analysis of Hybrid MIMO Using Sparse Signal Processing in mmW 5G Heterogeneous Wireless Networks

verfasst von: Sanjeev Chopra, Ajay Kakkar

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mmW cellular systems of large bandwidths offer multiple times rise in capacity as compared to existing 4G networks with comparable cell density. These avoid the unnecessary cell splitting by enlarging the capacity of individual tiny cells significantly in a scenario of very high-density cell deployments. This work will provide an opportunity to achieve a particular capacity value by varying the mmW channel gain in the 5G and 6G wireless networks. The OMP algorithm is modified and the existing sparse signal processing concept is utilized for the capacity analysis of hybrid MIMO here. The capacity (b/s/Hz) of the conventional and hybrid MIMOs are calculated and compared against given SNR range (dB) in a 5G mmW heterogeneous network under different values of mmW channel gain. It has been found that capacity analysis curves of conventional and hybrid MIMOs both show a descending trend with the increase in SNR range as the channel gain is increased due to over-saturation of the used sparse mmW channel. These curves exhibit local variation, time dependence, frequency selectivity, reliable communication rate, and diversity on both ends and the use of MIMO has a gain in degrees of freedom. The hybrid MIMO due to hardware limitations of conventional MIMO utilized a large number of antennas with lesser radio frequency chains. At some point of channel gain, its capacity curve approached the capacity curve of conventional MIMO in a moderate SNR range, and approached very closely for all channel gains in low and high SNR ranges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zeb, K., Zhang, X., & Lu, Z. (2019). High capacity mode division multiplexing based MIMO enabled all-optical analog millimeter-wave over fiber Fronthaul architecture for 5G and BEYOND. IEEE Access. Special Section on Roadmap to 5G: Rising to the Challenge, 7, 89522–89533. Zeb, K., Zhang, X., & Lu, Z. (2019). High capacity mode division multiplexing based MIMO enabled all-optical analog millimeter-wave over fiber Fronthaul architecture for 5G and BEYOND. IEEE Access. Special Section on Roadmap to 5G: Rising to the Challenge, 7, 89522–89533.
2.
Zurück zum Zitat Li, X., Zhou, R., Zhang, Y.-J. A., Jiao, L., & Li, Z. (2020). Smart vehicular communication via 5G mmWaves. Computer Networks, 172, 1–12. Li, X., Zhou, R., Zhang, Y.-J. A., Jiao, L., & Li, Z. (2020). Smart vehicular communication via 5G mmWaves. Computer Networks, 172, 1–12.
3.
Zurück zum Zitat Hong, X., Wang, J., Wang, C.-X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53. Hong, X., Wang, J., Wang, C.-X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53.
4.
Zurück zum Zitat Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications Magazine, 24(3), 17–25. Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications Magazine, 24(3), 17–25.
5.
Zurück zum Zitat Wicks, M. (2010). Spectrum crowding and cognitive radar. In 2nd international workshop on IEEE cognitive information processing (CIP) (pp. 452–745). Wicks, M. (2010). Spectrum crowding and cognitive radar. In 2nd international workshop on IEEE cognitive information processing (CIP) (pp. 452–745).
6.
Zurück zum Zitat Litva, J., & Lo, T. (1996). Digital beamforming in wireless communication. Boston: Artech House. Litva, J., & Lo, T. (1996). Digital beamforming in wireless communication. Boston: Artech House.
7.
Zurück zum Zitat Liu, J., Sheng, M., & Jiandong, L. (2018). Limitation of SDMA in Ultra-Dense Small Cell Networks. IEEE Wireless Communications Letters, 7(4), 506–509. Liu, J., Sheng, M., & Jiandong, L. (2018). Limitation of SDMA in Ultra-Dense Small Cell Networks. IEEE Wireless Communications Letters, 7(4), 506–509.
8.
Zurück zum Zitat Al-Hadi, A. A., Ilvonen, J., Valkonen, R., & Viikari, V. (2014). Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microwave and Optical Technology Letters, 56(6), 1323–1327. Al-Hadi, A. A., Ilvonen, J., Valkonen, R., & Viikari, V. (2014). Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microwave and Optical Technology Letters, 56(6), 1323–1327.
9.
Zurück zum Zitat Wong, K.-L., Kang, T.-W., & Tu, M.-F. (2011). ‘Internal mobile phone antenna array for LTE/WWAN and LTE MIMO operations. Microwave and Optical Technology Letters, 53(7), 1569–1573. Wong, K.-L., Kang, T.-W., & Tu, M.-F. (2011). ‘Internal mobile phone antenna array for LTE/WWAN and LTE MIMO operations. Microwave and Optical Technology Letters, 53(7), 1569–1573.
10.
Zurück zum Zitat Jensen, M. A., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation, 52(11), 2810–2824. Jensen, M. A., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation, 52(11), 2810–2824.
11.
Zurück zum Zitat Saxena, A. K. (2009). Wideband audio source localization using microphone array and MUSIC algorithm. Master thesis, University of Applied Sciences Hamburg. Saxena, A. K. (2009). Wideband audio source localization using microphone array and MUSIC algorithm. Master thesis, University of Applied Sciences Hamburg.
12.
Zurück zum Zitat Hwang, H. K., et al. (2008). Direction of arrival estimation using a root-MUSIC algorithm. In Proceedings of the International Multi Conference of Engineers and Computer Scientists, (IMECS 2008), (Vol. 2, pp. 1–4). Hwang, H. K., et al. (2008). Direction of arrival estimation using a root-MUSIC algorithm. In Proceedings of the International Multi Conference of Engineers and Computer Scientists, (IMECS 2008), (Vol. 2, pp. 1–4).
13.
Zurück zum Zitat Dongarsane, C. R., & Jadhav, A. N. (2011). Simulation study on DOA estimation using MUSIC algorithm. International Journal of Technology and Engineering System (IJTES), 2(1), 54–57. Dongarsane, C. R., & Jadhav, A. N. (2011). Simulation study on DOA estimation using MUSIC algorithm. International Journal of Technology and Engineering System (IJTES), 2(1), 54–57.
14.
Zurück zum Zitat Wu, Y., Leshem, A., Jensen, J. R., & Liao, G. (2015). Joint pitch and DOA estimation using the ESPRIT method. IEEE Audio, Speech, and Language Processing, IEEE/ACM Transactions, 23(1), 32–45. Wu, Y., Leshem, A., Jensen, J. R., & Liao, G. (2015). Joint pitch and DOA estimation using the ESPRIT method. IEEE Audio, Speech, and Language Processing, IEEE/ACM Transactions, 23(1), 32–45.
15.
Zurück zum Zitat Kitada, T. (2010). DoA estimation based on 2D-ESPRIT algorithm with multiple subarrays in hexagonal array. In IEEE Wireless Communications and Signal Processing, International Conference, pp. 1–6. Kitada, T. (2010). DoA estimation based on 2D-ESPRIT algorithm with multiple subarrays in hexagonal array. In IEEE Wireless Communications and Signal Processing, International Conference, pp. 1–6.
16.
Zurück zum Zitat Bermudez, J., et al. (2009). Simulation Study on DOA Estimation using ESPRIT Algorithm. Proceedings of the World Congress on Engineering and Computer Science, I, 6–9. Bermudez, J., et al. (2009). Simulation Study on DOA Estimation using ESPRIT Algorithm. Proceedings of the World Congress on Engineering and Computer Science, I, 6–9.
17.
Zurück zum Zitat Lan, X., et al. (2014). A novel DOA estimation algorithm using array rotation technique. Future Internet, 6(1), 155–170. Lan, X., et al. (2014). A novel DOA estimation algorithm using array rotation technique. Future Internet, 6(1), 155–170.
18.
Zurück zum Zitat Sun, C., & Karmakar, N. C. (2004). Direction of arrival estimation with a novel single-port smart antenna. EURASIP Journal on Applied Signal Processing, 9, 1364–1375. Sun, C., & Karmakar, N. C. (2004). Direction of arrival estimation with a novel single-port smart antenna. EURASIP Journal on Applied Signal Processing, 9, 1364–1375.
19.
Zurück zum Zitat Vincent Poor, H. (2002). long tong, signal processing for wireless communication systems. Boston: Kluwer. Vincent Poor, H. (2002). long tong, signal processing for wireless communication systems. Boston: Kluwer.
20.
Zurück zum Zitat Wu, Y., Hou, C., Liao, G., & Guo, Q. (2006). Direction-of-arrival estimation in the presence of unknown nonuniform noise fields. IEEE Journal of Oceanic Engineering, 31(2), 504–510. Wu, Y., Hou, C., Liao, G., & Guo, Q. (2006). Direction-of-arrival estimation in the presence of unknown nonuniform noise fields. IEEE Journal of Oceanic Engineering, 31(2), 504–510.
21.
Zurück zum Zitat Zhang, Y., Du, J., Chen, Y., Han, M., & Li, X. (2019). Optimal Hybrid Beamforming Design for Millimeter-Wave Massive Multi-User MIMO Relay Systems. IEEE Access, 7, 157212–157225. Zhang, Y., Du, J., Chen, Y., Han, M., & Li, X. (2019). Optimal Hybrid Beamforming Design for Millimeter-Wave Massive Multi-User MIMO Relay Systems. IEEE Access, 7, 157212–157225.
22.
Zurück zum Zitat Qui, M., & Zou, W. (2019). Low complexity joint hybrid precoding for millimeter wave MIMO systems. In China Communications (pp. 49–58). Qui, M., & Zou, W. (2019). Low complexity joint hybrid precoding for millimeter wave MIMO systems. In China Communications (pp. 49–58).
23.
Zurück zum Zitat Zhang, J., Dai, L., He, Z., Jin, S., & Li, X. (2017). Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE Journal Selected Areas in Communication, 35(6), 1327–1338. Zhang, J., Dai, L., He, Z., Jin, S., & Li, X. (2017). Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE Journal Selected Areas in Communication, 35(6), 1327–1338.
24.
Zurück zum Zitat Liang, N., & Zhang, W. (2016). Mixed-ADC massive MIMO. IEEE Journal Selected Areas in Communication, 34(4), 983–997. Liang, N., & Zhang, W. (2016). Mixed-ADC massive MIMO. IEEE Journal Selected Areas in Communication, 34(4), 983–997.
25.
Zurück zum Zitat Zhang, T.-C., Wen, C.-K., Jin, S., & Jiang, T. (2016). Mixed-ADC massive MIMO detectors: Performance analysis and design optimization. IEEE Transactions on Wireless Communication, 15(11), 7738–7752. Zhang, T.-C., Wen, C.-K., Jin, S., & Jiang, T. (2016). Mixed-ADC massive MIMO detectors: Performance analysis and design optimization. IEEE Transactions on Wireless Communication, 15(11), 7738–7752.
26.
Zurück zum Zitat Chen, Z., Sohrabi, F., & Wei, Yu. (2019). Multi-cell sparse activity detection for massive random access: Massive MIMO versus cooperative MIMO. IEEE Transactions on Wireless Communication, 18(8), 4060–4074. Chen, Z., Sohrabi, F., & Wei, Yu. (2019). Multi-cell sparse activity detection for massive random access: Massive MIMO versus cooperative MIMO. IEEE Transactions on Wireless Communication, 18(8), 4060–4074.
27.
Zurück zum Zitat Challita, F., Laly, P., Liénard, M., Tanghe, E., Joseph, W., & Gaillot, D. P. (2019). Hybrid virtual polarimetric massive MIMO measurements at 135 GHz. IET Microwaves, Antennas & Propagation, Special Section: Metrology for 5G Technologies, 13(15), 2610–2618. Challita, F., Laly, P., Liénard, M., Tanghe, E., Joseph, W., & Gaillot, D. P. (2019). Hybrid virtual polarimetric massive MIMO measurements at 135 GHz. IET Microwaves, Antennas & Propagation, Special Section: Metrology for 5G Technologies, 13(15), 2610–2618.
28.
Zurück zum Zitat Teodoro, S., Silva, A., Dinis, R., Barradas, F. M., Cabral, P. M., & Gameiro, A. (2019). Theoretical analysis of nonlinear amplification effects in massive MIMO systems. IEEE Access, 7, 172277–172289. Teodoro, S., Silva, A., Dinis, R., Barradas, F. M., Cabral, P. M., & Gameiro, A. (2019). Theoretical analysis of nonlinear amplification effects in massive MIMO systems. IEEE Access, 7, 172277–172289.
29.
Zurück zum Zitat Zi, R., Liu, J., Liang, Gu, & Ge, X. (2019). Enabling security and high energy efficiency in the internet of things with massive MIMO hybrid precoding. IEEE Internet of Things Journal, 6(5), 8615–8625. Zi, R., Liu, J., Liang, Gu, & Ge, X. (2019). Enabling security and high energy efficiency in the internet of things with massive MIMO hybrid precoding. IEEE Internet of Things Journal, 6(5), 8615–8625.
30.
Zurück zum Zitat Ozarow, L., Shamai, S., & Wyner, A. (1994). Information-theoretic considerations in cellular mobile radio. IEEE Transactions on Vehicular Technology, 43(2), 359–378. Ozarow, L., Shamai, S., & Wyner, A. (1994). Information-theoretic considerations in cellular mobile radio. IEEE Transactions on Vehicular Technology, 43(2), 359–378.
31.
Zurück zum Zitat Proaksi, J. G., & Salehi, M. (2008). Digital communication (5th ed.). New York: McGraw-Hill Education. Proaksi, J. G., & Salehi, M. (2008). Digital communication (5th ed.). New York: McGraw-Hill Education.
32.
Zurück zum Zitat Pollock, T. S., Abhayapala, T. D., & Kennedy, R. A. (2003). Introducing space into MIMO capacity calculations. Telecommunication Systems, 24(2–4), 415–436. Pollock, T. S., Abhayapala, T. D., & Kennedy, R. A. (2003). Introducing space into MIMO capacity calculations. Telecommunication Systems, 24(2–4), 415–436.
33.
Zurück zum Zitat El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transaction on Wireless Communication, 13(3), 1499–1513. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transaction on Wireless Communication, 13(3), 1499–1513.
34.
Zurück zum Zitat Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.
35.
Zurück zum Zitat Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453. Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.
36.
Zurück zum Zitat Méndez-Rial, R., Rusu, C., González-Prelcic, N., Alkhateeb, A., & Heath, R. W. (2016). Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches? IEEE Access, 4, 247–267. Méndez-Rial, R., Rusu, C., González-Prelcic, N., Alkhateeb, A., & Heath, R. W. (2016). Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches? IEEE Access, 4, 247–267.
37.
Zurück zum Zitat Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). ‘State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). ‘State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.
39.
Zurück zum Zitat Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107. Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.
40.
Zurück zum Zitat Mo, J., & Heath, R. W. (2015). Capacity analysis of one-bit quantized MIMO systems with transmitter channel state information. IEEE Transactions on Signal Processing, 63(20), 5498–5512.MathSciNetMATH Mo, J., & Heath, R. W. (2015). Capacity analysis of one-bit quantized MIMO systems with transmitter channel state information. IEEE Transactions on Signal Processing, 63(20), 5498–5512.MathSciNetMATH
41.
Zurück zum Zitat Parker, D., & Zimmermann, D. Z. (2002). ‘Phased arrays V Part I: Theory and architecture’. IEEE Transactions on Microwave Theory and Techniques, 50(3), 678–687. Parker, D., & Zimmermann, D. Z. (2002). ‘Phased arrays V Part I: Theory and architecture’. IEEE Transactions on Microwave Theory and Techniques, 50(3), 678–687.
42.
Zurück zum Zitat Koh, K.-J., & Rebeiz, G. M. (2007). 013-m CMOS phase shifters for X-, Ku- and K-band phased arrays. IEEE Journal of Solid-State Circuits, 42(11), 2535–2546. Koh, K.-J., & Rebeiz, G. M. (2007). 013-m CMOS phase shifters for X-, Ku- and K-band phased arrays. IEEE Journal of Solid-State Circuits, 42(11), 2535–2546.
43.
Zurück zum Zitat Koh, K.-J., & Rebeiz, G. M. (2009). A millimeter wave (4045 GHz) 16-element phased-array transmitter in 0.18-m SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 44(5), 1498–1509. Koh, K.-J., & Rebeiz, G. M. (2009). A millimeter wave (4045 GHz) 16-element phased-array transmitter in 0.18-m SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 44(5), 1498–1509.
44.
Zurück zum Zitat Crane, P. E. (1988). ‘Phased array scanning system. U.S. Patent 4 731 614. Crane, P. E. (1988). ‘Phased array scanning system. U.S. Patent 4 731 614.
45.
Zurück zum Zitat Raman, S., Barker, N. S., & Rebeiz, G. M. (1998). A W-band dielectric-lens-based integrated monopulse radar receive. IEEE Transactions on Microwave Theory and Techniques, 46(12), 2308–2316. Raman, S., Barker, N. S., & Rebeiz, G. M. (1998). A W-band dielectric-lens-based integrated monopulse radar receive. IEEE Transactions on Microwave Theory and Techniques, 46(12), 2308–2316.
46.
Zurück zum Zitat Guan, X., Hashemi, H., & Hajimiri, A. (2004). ‘A fully integrated 24-GHz eight-element phased-array receiver in silicon’. IEEE Journal of Solid-State Circuits, 39(12), 2311–2320. Guan, X., Hashemi, H., & Hajimiri, A. (2004). ‘A fully integrated 24-GHz eight-element phased-array receiver in silicon’. IEEE Journal of Solid-State Circuits, 39(12), 2311–2320.
47.
Zurück zum Zitat Kwon, G., Kim, N., & Park, H. (2019). Millimeter wave SDMA with limited feedback: RF-only beamforming can outperform hybrid beamforming. IEEE Transactions on Vehicular Technology, 68(2), 1534–1548. Kwon, G., Kim, N., & Park, H. (2019). Millimeter wave SDMA with limited feedback: RF-only beamforming can outperform hybrid beamforming. IEEE Transactions on Vehicular Technology, 68(2), 1534–1548.
48.
Zurück zum Zitat Sayeed, A., & Raghavan, V. (2007). Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 1(1), 156–166. Sayeed, A., & Raghavan, V. (2007). Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 1(1), 156–166.
49.
Zurück zum Zitat Zhang, H., et al. (2010). Channel modeling and MIMO capacity for outdoor millimeter wave links (pp. 1–6). Sydney, Australia: Proc. IEEE WCNC. Zhang, H., et al. (2010). Channel modeling and MIMO capacity for outdoor millimeter wave links (pp. 1–6). Sydney, Australia: Proc. IEEE WCNC.
50.
Zurück zum Zitat He, J., et al. (2014) Millimeter wave MIMO channel tracking systems. In Proceedings of IEEE Globecom Austin, USA (pp. 1–6). He, J., et al. (2014) Millimeter wave MIMO channel tracking systems. In Proceedings of IEEE Globecom Austin, USA (pp. 1–6).
51.
Zurück zum Zitat Yoo, I., Imani, M. F., Sleasman, T., Pfister, H. D., & Smith, D. R. (2019). Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Transactions on Communications, 67(2), 1070–1084. Yoo, I., Imani, M. F., Sleasman, T., Pfister, H. D., & Smith, D. R. (2019). Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Transactions on Communications, 67(2), 1070–1084.
52.
Zurück zum Zitat Zhang, K., Zhang, F., Zheng, G., & Saleem, A. (2019). GBSB model for MIMO channel using Leaky Coaxial cables in tunnel. IEEE Access, 7, 67646–67655. Zhang, K., Zhang, F., Zheng, G., & Saleem, A. (2019). GBSB model for MIMO channel using Leaky Coaxial cables in tunnel. IEEE Access, 7, 67646–67655.
53.
Zurück zum Zitat Fan, D., Gao, F., Liu, Y., Deng, Y., Wang, G., Zhong, Z., et al. (2018). Angle domain channel estimation in hybrid millimeter wave massive MIMO systems. IEEE Transactions on Wireless Communications, 17(2), 8165–8179. Fan, D., Gao, F., Liu, Y., Deng, Y., Wang, G., Zhong, Z., et al. (2018). Angle domain channel estimation in hybrid millimeter wave massive MIMO systems. IEEE Transactions on Wireless Communications, 17(2), 8165–8179.
54.
Zurück zum Zitat Wang, Y., & Zou, W. (2019). Low complexity hybrid precoder design for millimeter wave MIMO systems. IEEE Communications Letters, 23(7), 1259–1262. Wang, Y., & Zou, W. (2019). Low complexity hybrid precoder design for millimeter wave MIMO systems. IEEE Communications Letters, 23(7), 1259–1262.
55.
Zurück zum Zitat Lee, J., Gil, G.-T., & Lee, Y. H. (2016). Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Transactions on Communications, 64, 2370–2386. Lee, J., Gil, G.-T., & Lee, Y. H. (2016). Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Transactions on Communications, 64, 2370–2386.
56.
Zurück zum Zitat Wu, Y., Linnartz, J. P., Bergmans, J. W. M., & Attallah, S. (2008). Effects of antenna mutual coupling on the performance of MIMO systems. In 29th Symposium on information theory in the Benelux, Leuven, Belgium. Wu, Y., Linnartz, J. P., Bergmans, J. W. M., & Attallah, S. (2008). Effects of antenna mutual coupling on the performance of MIMO systems. In 29th Symposium on information theory in the Benelux, Leuven, Belgium.
57.
Zurück zum Zitat Haleem, M. A. (2018). On the capacity and transmission techniques of massive MIMO systems. In Hindawi Wireless Communications and Mobile Computing of Wiley (pp 1–9). Haleem, M. A. (2018). On the capacity and transmission techniques of massive MIMO systems. In Hindawi Wireless Communications and Mobile Computing of Wiley (pp 1–9).
58.
Zurück zum Zitat Zhang, R., Zou, W., Wang, Y., & Cui, M. (2019). Hybrid precoder and combiner design with finite resolution PSs for mmWave MIMO systems. China Communications, 16, 95–104. Zhang, R., Zou, W., Wang, Y., & Cui, M. (2019). Hybrid precoder and combiner design with finite resolution PSs for mmWave MIMO systems. China Communications, 16, 95–104.
59.
Zurück zum Zitat Chen, C.-E. (2015). An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wireless Communications Letters, 4(3), 285–288. Chen, C.-E. (2015). An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wireless Communications Letters, 4(3), 285–288.
Metadaten
Titel
Capacity Analysis of Hybrid MIMO Using Sparse Signal Processing in mmW 5G Heterogeneous Wireless Networks
verfasst von
Sanjeev Chopra
Ajay Kakkar
Publikationsdatum
07.10.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07815-z

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt