Skip to main content

2019 | OriginalPaper | Buchkapitel

9. Carbon Allotropes in the Environment and Their Toxicity

verfasst von : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Erschienen in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As well as other contaminants (particular matter, heavy metal ions, toxic gases, etc.), carbon allotropes are severe contaminants in air, water, and soil. For example, for diesel vehicles, the black carbon (BC), organic carbon (OC), and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and other compounds, are typical contaminants under real-world driving conditions [1]. Among carbon allotropes in the environment, the most important carbons in the elemental form are black carbon (mainly), carbon nanotubes, graphene, and fullerenes in lesser quantities. Engineered carbon nanoparticles range from the well-established multi-ton production of carbon black (CB) and other carbon allotropes for applications in plastics and car tires to microgram quantities of fluorescent quantum dots used as markers in biological imaging. All of them possess distinct toxicity, depending on many factors (type of allotrope, particle size, form, structural defects, coating molecules, grade of functionalization, etc.). So, the nanotoxicology, as a scientific discipline, shall be quite different from occupational hygiene in approach and context. Understanding the toxicity of carbon nanomaterials and nano-enabled products is important for human and environmental health and safety as well as public acceptance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In soil environments, nanomaterials come into contact with both organic matter and salts resulting in a substantially different microenvironment in comparison with test conditions observed in water or culture media.
 
2
See the difference between carbon black and black carbon below.
 
3
An excellent review dedicated to the carbon materials in the environment
 
4
Another term is frequently used, without “nano-” prefix: Graphene Family Materials (GFMs), Fig. 9.5
 
Literatur
1.
Zurück zum Zitat M. Zavala, L.T. Molina, T.I. Yacovitch, et al., Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City. Atmos. Chem. Phys. 17, 15293–15305 (2017)CrossRef M. Zavala, L.T. Molina, T.I. Yacovitch, et al., Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City. Atmos. Chem. Phys. 17, 15293–15305 (2017)CrossRef
2.
Zurück zum Zitat C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)CrossRef C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)CrossRef
3.
Zurück zum Zitat S.G. DuBay, C.C. Fuldner, Bird specimens track 135 years of atmospheric black carbon and environmental policy. PNAS 114(43), 11321–11326 (2017)CrossRef S.G. DuBay, C.C. Fuldner, Bird specimens track 135 years of atmospheric black carbon and environmental policy. PNAS 114(43), 11321–11326 (2017)CrossRef
4.
Zurück zum Zitat B.M. Mohamed, N.K. Verma, A.M. Davies, A. McGowan, K. Crosbie Staunton, A. Prina-Mello, D. Kelleher, C.H. Botting, C.P. Causey, et al., Citrullination of proteins: A common post-translational modification pathway induced by different nanoparticlesin vitroandin vivo. Nanomedicine 7, 1181–1195 (2012). https://doi.org/10.2217/nnm.11.177CrossRef B.M. Mohamed, N.K. Verma, A.M. Davies, A. McGowan, K. Crosbie Staunton, A. Prina-Mello, D. Kelleher, C.H. Botting, C.P. Causey, et al., Citrullination of proteins: A common post-translational modification pathway induced by different nanoparticlesin vitroandin vivo. Nanomedicine 7, 1181–1195 (2012). https://​doi.​org/​10.​2217/​nnm.​11.​177CrossRef
5.
Zurück zum Zitat A. Don Porto Carero, P.H. Hoet, L. Verschaeve, G. Schoeters, B. Nemery, Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol. Mutagen 37(2), 155–163 (2001)CrossRef A. Don Porto Carero, P.H. Hoet, L. Verschaeve, G. Schoeters, B. Nemery, Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol. Mutagen 37(2), 155–163 (2001)CrossRef
6.
Zurück zum Zitat J. Lohwacharin, S. Takizawa, P. Punyapalakul, Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter. Environ. Pollut. 205, 131–138 (2015)CrossRef J. Lohwacharin, S. Takizawa, P. Punyapalakul, Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter. Environ. Pollut. 205, 131–138 (2015)CrossRef
7.
Zurück zum Zitat M.W.I. Schmidt, Black carbon in soils and sediments. Analysis, distribution, implications, and current challenges. Glob. Biochem. Cycles 14(3), 777–793 (2000)CrossRef M.W.I. Schmidt, Black carbon in soils and sediments. Analysis, distribution, implications, and current challenges. Glob. Biochem. Cycles 14(3), 777–793 (2000)CrossRef
8.
Zurück zum Zitat S.J.K. Hussey, J. Purves, N. Allcock, V.E. Fernandes, P.S. Monks, J.M. Ketley, P.W. Andrew, J.A. Morrissey, Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ. Microbiol. 19(5), 1868–1880 (2017)CrossRef S.J.K. Hussey, J. Purves, N. Allcock, V.E. Fernandes, P.S. Monks, J.M. Ketley, P.W. Andrew, J.A. Morrissey, Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ. Microbiol. 19(5), 1868–1880 (2017)CrossRef
10.
Zurück zum Zitat J. Kolosnjaj-Tabi, F. Moussa, Anthropogenic carbon nanotubes and air pollution. Emission Control Sci. Technol. 3(3), 230–232 (2017)CrossRef J. Kolosnjaj-Tabi, F. Moussa, Anthropogenic carbon nanotubes and air pollution. Emission Control Sci. Technol. 3(3), 230–232 (2017)CrossRef
11.
Zurück zum Zitat J. Du, S. Wang, H. You, X. Zhao, Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 36(2), 451–462 (2013)CrossRef J. Du, S. Wang, H. You, X. Zhao, Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 36(2), 451–462 (2013)CrossRef
12.
Zurück zum Zitat A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health Knowledge Base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRef A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health Knowledge Base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRef
13.
Zurück zum Zitat J. Kolosnjaj-Tabi, J. Just, K.B. Hartman, et al., Anthropogenic carbon nanotubes found in the airways of parisian children. EBioMedicine 2, 1697–1704 (2015)CrossRef J. Kolosnjaj-Tabi, J. Just, K.B. Hartman, et al., Anthropogenic carbon nanotubes found in the airways of parisian children. EBioMedicine 2, 1697–1704 (2015)CrossRef
14.
Zurück zum Zitat J. Kolosnjaj-Tabi, H. Szwarc, F. Moussa, Carbon nanotubes: Culprit or witness of air pollution? Nano Today 15, 11–14 (2017)CrossRef J. Kolosnjaj-Tabi, H. Szwarc, F. Moussa, Carbon nanotubes: Culprit or witness of air pollution? Nano Today 15, 11–14 (2017)CrossRef
15.
Zurück zum Zitat R. Girardello, S. Tasselli, N. Baranzini, et al., Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS ONE 10(12), e0144361 (2015)CrossRef R. Girardello, S. Tasselli, N. Baranzini, et al., Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS ONE 10(12), e0144361 (2015)CrossRef
16.
Zurück zum Zitat Y. Yang, Y. Xiao, M. Li, et al., Evaluation of complex toxicity of carbon nanotubes and sodium pentachlorophenol based on earthworm coelomocytes test. PLoS One 12(1), e0170092 (2017)CrossRef Y. Yang, Y. Xiao, M. Li, et al., Evaluation of complex toxicity of carbon nanotubes and sodium pentachlorophenol based on earthworm coelomocytes test. PLoS One 12(1), e0170092 (2017)CrossRef
17.
Zurück zum Zitat A.M. Jastrzębska, A.R. Olszyna, The ecotoxicity of graphene family materials: Current status, knowledge gaps and future needs. J. Nanopart. Res. 17, 40 (2015)CrossRef A.M. Jastrzębska, A.R. Olszyna, The ecotoxicity of graphene family materials: Current status, knowledge gaps and future needs. J. Nanopart. Res. 17, 40 (2015)CrossRef
18.
Zurück zum Zitat M. Pelin, L. Fusco, V. León, et al., Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 7, 40572 (2017)CrossRef M. Pelin, L. Fusco, V. León, et al., Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 7, 40572 (2017)CrossRef
19.
Zurück zum Zitat A.B. Seabra, A.J. Paula, R. de Lima, et al., Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)CrossRef A.B. Seabra, A.J. Paula, R. de Lima, et al., Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)CrossRef
21.
Zurück zum Zitat A. Maria Jastrzębska, P. Kurtycz, A. Roman Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14, 1320 (2012)CrossRef A. Maria Jastrzębska, P. Kurtycz, A. Roman Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14, 1320 (2012)CrossRef
22.
Zurück zum Zitat X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014)CrossRef X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014)CrossRef
23.
Zurück zum Zitat H. Chung, M.J. Kimb, K. Ko, et al., Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 514, 307–313 (2015)CrossRef H. Chung, M.J. Kimb, K. Ko, et al., Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 514, 307–313 (2015)CrossRef
24.
Zurück zum Zitat L. Ou, B. Song, et al., Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)CrossRef L. Ou, B. Song, et al., Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)CrossRef
25.
Zurück zum Zitat J. Wang, T.B. Onasch, X. Ge, et al., Observation of fullerene soot in eastern China. Environ. Sci. Technol. Lett 3(4), 121–126 (2016)CrossRef J. Wang, T.B. Onasch, X. Ge, et al., Observation of fullerene soot in eastern China. Environ. Sci. Technol. Lett 3(4), 121–126 (2016)CrossRef
26.
Zurück zum Zitat S.D. Snow, K. Chul Kim, K.J. Moor, et al., Functionalized fullerenes in water: A closer look. Environ. Sci. Technol. 49(4), 2147–2155 (2015)CrossRef S.D. Snow, K. Chul Kim, K.J. Moor, et al., Functionalized fullerenes in water: A closer look. Environ. Sci. Technol. 49(4), 2147–2155 (2015)CrossRef
27.
Zurück zum Zitat Z.-H. Tong, M.A. Bischo, L.F. Nies, et al., Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co- introduction effects. Sci. Rep 6, 28069 (2016)CrossRef Z.-H. Tong, M.A. Bischo, L.F. Nies, et al., Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co- introduction effects. Sci. Rep 6, 28069 (2016)CrossRef
28.
Zurück zum Zitat D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez, Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 40(14), 4360–4366 (2006)CrossRef D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez, Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 40(14), 4360–4366 (2006)CrossRef
29.
Zurück zum Zitat A. Johansen, A.L. Pedersen, K.A. Jensen, et al., Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Env. Toxicol. Chem. 27(9), 1895–1903 (2008)CrossRef A. Johansen, A.L. Pedersen, K.A. Jensen, et al., Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Env. Toxicol. Chem. 27(9), 1895–1903 (2008)CrossRef
30.
Zurück zum Zitat D.A. Navarro, R.S. Kookana, M.J. McLaughlin, J.K. Kirby, Fate of radiolabeled C60 fullerenes in aged soils. Environ. Pollut. 221, 293–300 (2017)CrossRef D.A. Navarro, R.S. Kookana, M.J. McLaughlin, J.K. Kirby, Fate of radiolabeled C60 fullerenes in aged soils. Environ. Pollut. 221, 293–300 (2017)CrossRef
31.
Zurück zum Zitat R. Avanasi, W.A. Jackson, B. Sherwin, et al., C60 fullerene soil sorption, biodegradation, and plant uptake. Environ. Sci. Technol. 48(5), 2792–2797 (2014)CrossRef R. Avanasi, W.A. Jackson, B. Sherwin, et al., C60 fullerene soil sorption, biodegradation, and plant uptake. Environ. Sci. Technol. 48(5), 2792–2797 (2014)CrossRef
32.
Zurück zum Zitat X. Ma, C. Wang, Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Env. Eng. Sci. 27(10), 989–992 (2010)CrossRef X. Ma, C. Wang, Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Env. Eng. Sci. 27(10), 989–992 (2010)CrossRef
33.
Zurück zum Zitat I. Joskoa, P. Oleszczuk, J. Pranagal, et al., Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol. Eng. 60, 50–59 (2013)CrossRef I. Joskoa, P. Oleszczuk, J. Pranagal, et al., Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol. Eng. 60, 50–59 (2013)CrossRef
34.
Zurück zum Zitat J. Shan, R. Ji, Y. Yu, Z. Xie, X. Yan, Biochar, activated carbon, and carbon nanotubes have di erent e ects on fate of 14C-catechol and microbial community in soil. Sci. Rep. 5, 16000 (2015)CrossRef J. Shan, R. Ji, Y. Yu, Z. Xie, X. Yan, Biochar, activated carbon, and carbon nanotubes have di erent e ects on fate of 14C-catechol and microbial community in soil. Sci. Rep. 5, 16000 (2015)CrossRef
35.
Zurück zum Zitat E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, et al., Quantification of carbon nanotubes in 1 environmental matrices: Current capabilities, 2 case studies, and future prospects. Environ. Sci. Technol. 50(9), 4587–4605 (2016)CrossRef E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, et al., Quantification of carbon nanotubes in 1 environmental matrices: Current capabilities, 2 case studies, and future prospects. Environ. Sci. Technol. 50(9), 4587–4605 (2016)CrossRef
36.
Zurück zum Zitat T. Baquero, S. Shukrallah, R. Karolia, et al., Quantification of airborne road-side pollution carbon nanoparticles. J. Phys. Conf. Ser. 644, 012023 (2015)CrossRef T. Baquero, S. Shukrallah, R. Karolia, et al., Quantification of airborne road-side pollution carbon nanoparticles. J. Phys. Conf. Ser. 644, 012023 (2015)CrossRef
37.
Zurück zum Zitat M. Sharma, Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J. Occup. Environ. Med. 14(1), 3–5 (2010)CrossRef M. Sharma, Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J. Occup. Environ. Med. 14(1), 3–5 (2010)CrossRef
39.
Zurück zum Zitat I.A. Resitoglu, K. Altinisik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy 17, 15–27 (2015)CrossRef I.A. Resitoglu, K. Altinisik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy 17, 15–27 (2015)CrossRef
Metadaten
Titel
Carbon Allotropes in the Environment and Their Toxicity
verfasst von
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.