Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2014 | Original Article | Ausgabe 4/2014

Environmental Earth Sciences 4/2014

Carbon dioxide injection and associated hydraulic fracturing of reservoir formations

Zeitschrift:
Environmental Earth Sciences > Ausgabe 4/2014
Autoren:
Kenneth Imo–Imo Eshiet, Yong Sheng

Abstract

The storage potential of subsurface geological systems makes them viable candidates for long-term disposal of significant quantities of CO2. The geo-mechanical responses of these systems as a result of injection processes as well as the protracted storage of CO2 are aspects that require sufficient understanding. A hypothetical model has been developed that conceptualises a typical well-reservoir system comprising an injection well where the fluid (CO2) is introduced and a production/abandoned well sited at a distant location. This was accomplished by adopting a numerical methodology (discrete element method), specifically designed to investigate the geo-mechanical phenomena whereby the various processes are monitored at the inter-particle scale. Fracturing events were simulated. In addition, the influence of certain operating variables such as injection flow rate and fluid pressure was studied with particular interest in the nature of occurring fractures and trend of propagation, the pattern and magnitude of pressure build-up at the well vicinity, pressure distribution between well regions and pore velocity distribution between well regions. Modelling results generally show an initiation of fracturing caused by tensile failure of the rock material at the region of fluid injection; however, fracturing caused by shear failure becomes more dominant at the later stage of injection. Furthermore, isolated fracturing events were observed to occur at the production/abandoned wells that were not propagated from the injection point. This highlights the potential of CO2 introduced through an injection well, which could be used to enhance oil/gas recovery at a distant production well. The rate and magnitude of fracture development are directly influenced by the fluid injection rate. Likewise, the magnitude of pressure build-up is greatly affected by the fluid injection rate and the distance from the point of injection. The DEM modelling technique illustrated provides an effective procedure that allows for more specific investigations of geo-mechanical mechanisms occurring at subsurface systems. The application of this methodology to the injection and storage of CO2 facilitates the understanding of the fracturing phenomenon as well as the various factors governing the process.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2014

Environmental Earth Sciences 4/2014 Zur Ausgabe

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Systemische Notwendigkeit zur Weiterentwicklung von Hybridnetzen

Die Entwicklung des mitteleuropäischen Energiesystems und insbesondere die Weiterentwicklung der Energieinfrastruktur sind konfrontiert mit einer stetig steigenden Diversität an Herausforderungen, aber auch mit einer zunehmenden Komplexität in den Lösungsoptionen. Vor diesem Hintergrund steht die Weiterentwicklung von Hybridnetzen symbolisch für das ganze sich in einer Umbruchsphase befindliche Energiesystem: denn der Notwendigkeit einer Schaffung und Bildung der Hybridnetze aus systemischer und volkswirtschaftlicher Perspektive steht sozusagen eine Komplexitätsfalle gegenüber, mit der die Branche in der Vergangenheit in dieser Intensität nicht konfrontiert war. Jetzt gratis downloaden!

Bildnachweise