Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-12/2019

20.07.2019 | ORIGINAL ARTICLE

Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties

verfasst von: Olusoji Oluremi Ayodele, Mary Ajimegoh Awotunde, Mxolisi Brendon Shongwe, Adewale Oladapo Adegbenjo, Bukola Joseph Babalola, Ayorinde Tayo Olanipekun, Peter Apata Olubambi

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intermetallic compounds (NiAl) are potential high-temperature structure materials due to their exceptional physical and thermo-mechanical properties. NiAl offer a wide range of applications which stem from aerospace to automobile industry but their utilization is restricted owing to low ductility and fracture toughness. However, carbon nanotubes (CNTs) have been recognized to impact strength and improve mechanical properties in metal matrices because of their superior tensile strength, high aspect ratio, low density, and elastic modulus. This has contributed to advance developments of novel materials. In recent times, CNTs have been a focus of immense research due to presence of sp2 C–C bonds in their outer shells, with continuous cylindrical shape which significantly contributed to their superior characteristics. The processing methods of integrating CNTs in metal matrices as well as maintaining their structural integrity through the powder metallurgy routes are reviewed. The mechanical properties, microstructure evolutions, effect of CNT addition, and sintering mechanism are also articulated in this review.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40(1):38–55 Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40(1):38–55
2.
Zurück zum Zitat Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev 55(1):41–64 Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev 55(1):41–64
3.
Zurück zum Zitat Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629 Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629
4.
Zurück zum Zitat Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102:1689–1701 Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102:1689–1701
5.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58
6.
Zurück zum Zitat Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater Sci Eng A 688:505–523 Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater Sci Eng A 688:505–523
7.
Zurück zum Zitat Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70(16):2237–2241 Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70(16):2237–2241
8.
Zurück zum Zitat Dresselhaus M, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891 Dresselhaus M, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891
9.
Zurück zum Zitat Eklund P, Holden J, Jishi R (1995) Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33(7):959–972 Eklund P, Holden J, Jishi R (1995) Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33(7):959–972
10.
Zurück zum Zitat Yakobson BI, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Mechanical properties of carbon nanotubes, in carbon nanotubes: synthesis, structure, properties, and applications. Springer Berlin Heidelberg, Berlin, pp 287–327 Yakobson BI, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Mechanical properties of carbon nanotubes, in carbon nanotubes: synthesis, structure, properties, and applications. Springer Berlin Heidelberg, Berlin, pp 287–327
11.
Zurück zum Zitat Ebbesen TW (1996) Carbon nanotubes: preparation and properties. CRC Press, Boca Raton Ebbesen TW (1996) Carbon nanotubes: preparation and properties. CRC Press, Boca Raton
12.
Zurück zum Zitat Ajayan P (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800 Ajayan P (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800
13.
Zurück zum Zitat Yu M-F et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640 Yu M-F et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640
14.
Zurück zum Zitat Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1):173–178 Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1):173–178
15.
Zurück zum Zitat Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118 Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118
16.
Zurück zum Zitat Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4(9):993–1008 Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4(9):993–1008
17.
Zurück zum Zitat Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14(12):5169–5172 Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14(12):5169–5172
18.
Zurück zum Zitat Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706 Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706
19.
Zurück zum Zitat Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9 Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9
20.
Zurück zum Zitat Grabke HJ (1999) Oxidation of NiAl and FeAl. Intermetallics 7(10):1153–1158 Grabke HJ (1999) Oxidation of NiAl and FeAl. Intermetallics 7(10):1153–1158
21.
Zurück zum Zitat Hu W, Weirich T, Hallstedt B, Chen H, Zhong Y, Gottstein G (2006) Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Mater 54(9):2473–2488 Hu W, Weirich T, Hallstedt B, Chen H, Zhong Y, Gottstein G (2006) Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Mater 54(9):2473–2488
22.
Zurück zum Zitat Geist D, Gammer C, Rentenberger C, Karnthaler HP (2015) Sessile dislocations by reactions in NiAl severely deformed at room temperature. J Alloys Compd 621:371–377 Geist D, Gammer C, Rentenberger C, Karnthaler HP (2015) Sessile dislocations by reactions in NiAl severely deformed at room temperature. J Alloys Compd 621:371–377
23.
Zurück zum Zitat Dey G (2003) Physical metallurgy of nickel aluminides. Sadhana 28(1-2):247–262 Dey G (2003) Physical metallurgy of nickel aluminides. Sadhana 28(1-2):247–262
24.
Zurück zum Zitat Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912 Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912
25.
Zurück zum Zitat Munir KS, Li Y, Liang D, Qian M, Xu W, Wen C (2015) Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Mater Des 88:138–148 Munir KS, Li Y, Liang D, Qian M, Xu W, Wen C (2015) Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Mater Des 88:138–148
26.
Zurück zum Zitat Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830 Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830
27.
Zurück zum Zitat Jia H, Zhang Z, Qi Z, Liu G, Bian X (2009) Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying. J Alloys Compd 472(1-2):97–103 Jia H, Zhang Z, Qi Z, Liu G, Bian X (2009) Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying. J Alloys Compd 472(1-2):97–103
28.
Zurück zum Zitat Gill P, Munroe N (2012) Study of carbon nanotubes in Cu-Cr metal matrix composites. J Mater Eng Perform 21(11):2467–2471 Gill P, Munroe N (2012) Study of carbon nanotubes in Cu-Cr metal matrix composites. J Mater Eng Perform 21(11):2467–2471
29.
Zurück zum Zitat Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375 Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375
30.
Zurück zum Zitat Piggott M (1989) The interface in carbon fibre composites. Carbon 27(5):657–662 Piggott M (1989) The interface in carbon fibre composites. Carbon 27(5):657–662
31.
Zurück zum Zitat Wei S, Zhang ZH, Wang FC, Shen XB, Cai HN, Lee SK, Wang L (2013) Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater Sci Eng A 560:249–255 Wei S, Zhang ZH, Wang FC, Shen XB, Cai HN, Lee SK, Wang L (2013) Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater Sci Eng A 560:249–255
32.
Zurück zum Zitat Talaş Ş (2018) In: Mitra R (ed) 3 - Nickel aluminides, in Intermetallic Matrix Composites. Woodhead Publishing, Sawston, pp 37–69 Talaş Ş (2018) In: Mitra R (ed) 3 - Nickel aluminides, in Intermetallic Matrix Composites. Woodhead Publishing, Sawston, pp 37–69
33.
Zurück zum Zitat Foiles SM, Daw MS (2011) Application of the embedded atom method to Ni3Al. J Mater Res 2(1):5–15 Foiles SM, Daw MS (2011) Application of the embedded atom method to Ni3Al. J Mater Res 2(1):5–15
34.
Zurück zum Zitat Makino Y (1998) Application of band parameters to materials design. ISIJ Int 38(9):925–934 Makino Y (1998) Application of band parameters to materials design. ISIJ Int 38(9):925–934
35.
Zurück zum Zitat Robertson I, Wayman C (1984) Ni5Al3 and the nickel-aluminum binary phase diagram. Metallography 17(1):43–55 Robertson I, Wayman C (1984) Ni5Al3 and the nickel-aluminum binary phase diagram. Metallography 17(1):43–55
36.
Zurück zum Zitat Okamoto H (2004) Al-Ni (aluminum-nickel). J Phase Equilib Diffus 25(4):394–394 Okamoto H (2004) Al-Ni (aluminum-nickel). J Phase Equilib Diffus 25(4):394–394
37.
Zurück zum Zitat Darolia R (1991) NiAl alloys for high-temperature structural applications. JOM 43(3):44–49 Darolia R (1991) NiAl alloys for high-temperature structural applications. JOM 43(3):44–49
38.
Zurück zum Zitat Frommeyer G, Rablbauer R (2008) High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Res Int 79(7):507–512 Frommeyer G, Rablbauer R (2008) High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Res Int 79(7):507–512
39.
Zurück zum Zitat Schilke P, Schenectady N (2004) Advanced gas turbine materials and coatings gas turbine repair technology. Paper No. GER G, 3569 Schilke P, Schenectady N (2004) Advanced gas turbine materials and coatings gas turbine repair technology. Paper No. GER G, 3569
40.
Zurück zum Zitat Vedula K, Hahn K, Boulogne B (1988) Room temperature tensile ductility in polycrystalline B2 NiAl. MRS Online Proceedings Library Archive, 133 Vedula K, Hahn K, Boulogne B (1988) Room temperature tensile ductility in polycrystalline B2 NiAl. MRS Online Proceedings Library Archive, 133
41.
Zurück zum Zitat Schulson E, Barker D (1983) A brittle to ductile transition in NiAl of a critical grain size Scpt Meta 17(4): 519-522 Schulson E, Barker D (1983) A brittle to ductile transition in NiAl of a critical grain size Scpt Meta 17(4): 519-522
42.
Zurück zum Zitat Sauthoff G (1989) Intermetallic phases-materials developments and prospects. Z Met 80(5):337–344 Sauthoff G (1989) Intermetallic phases-materials developments and prospects. Z Met 80(5):337–344
43.
Zurück zum Zitat George E, Liu C (1990) Brittle fracture and grain boundary chemistry of microalloyed NiAl. J Mater Res 5(4):754–762 George E, Liu C (1990) Brittle fracture and grain boundary chemistry of microalloyed NiAl. J Mater Res 5(4):754–762
44.
Zurück zum Zitat Bochenek K, Basista M (2015) Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog Aerosp Sci 79:136–146 Bochenek K, Basista M (2015) Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog Aerosp Sci 79:136–146
45.
Zurück zum Zitat Field RD, Lahrman D, Darolia R (1991) Slip systems in< 001> oriented NiAl single crystals. Acta Metall Mater 39(12):2951–2959 Field RD, Lahrman D, Darolia R (1991) Slip systems in< 001> oriented NiAl single crystals. Acta Metall Mater 39(12):2951–2959
46.
Zurück zum Zitat Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy RJ, Vazquez J, Bayers R (1993) Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-LayerWalls. Nature 363:605-607 Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy RJ, Vazquez J, Bayers R (1993) Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-LayerWalls. Nature 363:605-607
47.
Zurück zum Zitat Saito R et al (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206 Saito R et al (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206
48.
Zurück zum Zitat Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken
49.
Zurück zum Zitat Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501 Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501
50.
Zurück zum Zitat Munir KS, Wen C (2016) Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit Rev Solid State Mater Sci 41(5):347–366 Munir KS, Wen C (2016) Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit Rev Solid State Mater Sci 41(5):347–366
51.
Zurück zum Zitat Shi X et al (2007) Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes. Mater Sci Eng A 457(1-2):18–23 Shi X et al (2007) Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes. Mater Sci Eng A 457(1-2):18–23
52.
Zurück zum Zitat Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303 Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303
53.
Zurück zum Zitat Yang YL, Wang YD, Ren Y, He CS, Deng JN, Nan J, Chen JG, Zuo L (2008) Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater Lett 62(1):47–50 Yang YL, Wang YD, Ren Y, He CS, Deng JN, Nan J, Chen JG, Zuo L (2008) Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater Lett 62(1):47–50
54.
Zurück zum Zitat Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37(5):855–858 Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37(5):855–858
55.
Zurück zum Zitat Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218 Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218
56.
Zurück zum Zitat Chen XH, Peng JC, Li XQ, Deng FM, Wang JX, Li WZ (2001) Tribological behavior of carbon nanotubes—reinforced nickel matrix composite coatings. J Mater Sci Lett 20(22):2057–2060 Chen XH, Peng JC, Li XQ, Deng FM, Wang JX, Li WZ (2001) Tribological behavior of carbon nanotubes—reinforced nickel matrix composite coatings. J Mater Sci Lett 20(22):2057–2060
57.
Zurück zum Zitat Chen X-H et al (2003) Carbon nanotube composite deposits with high hardness and high wear resistance. Adv Eng Mater 5(7):514–518 Chen X-H et al (2003) Carbon nanotube composite deposits with high hardness and high wear resistance. Adv Eng Mater 5(7):514–518
58.
Zurück zum Zitat Chen W et al (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222 Chen W et al (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222
59.
Zurück zum Zitat Zhou S-M, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A: Appl Sci Manuf 38(2):301–306 Zhou S-M, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A: Appl Sci Manuf 38(2):301–306
60.
Zurück zum Zitat Salvetat J-P, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260 Salvetat J-P, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260
61.
Zurück zum Zitat Meyyappan M (2005) Carbon nanotubes : science and applications. CRC Press, Boca Raton Meyyappan M (2005) Carbon nanotubes : science and applications. CRC Press, Boca Raton
62.
Zurück zum Zitat Delaney P, Choi HJ, Ihm J, Louie SG, Cohen ML (1998) Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature 391(6666):466–468 Delaney P, Choi HJ, Ihm J, Louie SG, Cohen ML (1998) Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature 391(6666):466–468
63.
Zurück zum Zitat Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct 43(11):1787–1803 Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct 43(11):1787–1803
64.
Zurück zum Zitat Reihanian M, Bagherpour E, Paydar MH (2009) A model for volume fraction and particle size selection in tri-modal metal matrix composites. Mater Sci Eng A 513-514:172–175 Reihanian M, Bagherpour E, Paydar MH (2009) A model for volume fraction and particle size selection in tri-modal metal matrix composites. Mater Sci Eng A 513-514:172–175
65.
Zurück zum Zitat Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol 69(7):1077–1081 Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol 69(7):1077–1081
66.
Zurück zum Zitat Zeng X, Zhou GH, Xu Q, Xiong Y, Luo C, Wu J (2010) A new technique for dispersion of carbon nanotube in a metal melt. Mater Sci Eng A 527(20):5335–5340 Zeng X, Zhou GH, Xu Q, Xiong Y, Luo C, Wu J (2010) A new technique for dispersion of carbon nanotube in a metal melt. Mater Sci Eng A 527(20):5335–5340
67.
Zurück zum Zitat Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189 Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189
68.
Zurück zum Zitat Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585(Supplement C):408–414 Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585(Supplement C):408–414
69.
Zurück zum Zitat Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A 425(1):192–200 Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A 425(1):192–200
70.
Zurück zum Zitat Benjamin JS (1990) Mechanical alloying — a perspective. Met Powder Rep 45(2):122–127 Benjamin JS (1990) Mechanical alloying — a perspective. Met Powder Rep 45(2):122–127
71.
Zurück zum Zitat Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184 Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184
72.
Zurück zum Zitat Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans A 5(8):1929–1934 Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans A 5(8):1929–1934
73.
Zurück zum Zitat Pierard N, Fonseca A, Konya Z, Willems I, van Tendeloo G, B.Nagy J (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335(1):1–8 Pierard N, Fonseca A, Konya Z, Willems I, van Tendeloo G, B.Nagy J (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335(1):1–8
74.
Zurück zum Zitat Agarwal A, Bakshi SR, Lahiri D (2016) Carbon nanotubes: reinforced metal matrix composites. CRC Press, Boca Raton Agarwal A, Bakshi SR, Lahiri D (2016) Carbon nanotubes: reinforced metal matrix composites. CRC Press, Boca Raton
75.
Zurück zum Zitat Ferrer-Anglada N, Gomis V, el-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087 Ferrer-Anglada N, Gomis V, el-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087
76.
Zurück zum Zitat Shi Y et al (2004) Electroplated synthesis of Ni–P–UFD, Ni–P–CNTs, and Ni–P–UFD–CNTs composite coatings as hydrogen evolution electrodes. Mater Chem Phys 87(1):154–161 Shi Y et al (2004) Electroplated synthesis of Ni–P–UFD, Ni–P–CNTs, and Ni–P–UFD–CNTs composite coatings as hydrogen evolution electrodes. Mater Chem Phys 87(1):154–161
77.
Zurück zum Zitat Liu B, Liu L, Liu X (2013) Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings. Surf Eng 29(7):507–510 Liu B, Liu L, Liu X (2013) Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings. Surf Eng 29(7):507–510
78.
Zurück zum Zitat Chen X et al (2002) Electrodeposited nickel composites containing carbon nanotubes. Surf Coat Technol 155(2-3):274–278 Chen X et al (2002) Electrodeposited nickel composites containing carbon nanotubes. Surf Coat Technol 155(2-3):274–278
79.
Zurück zum Zitat Changrong X, Xiaoxia G, Fanqing L, Dingkun P, Guangyao M (2001) Preparation of asymmetric Ni/ceramic composite membrane by electroless plating. Colloids Surf A Physicochem Eng Asp 179(2-3):229–235 Changrong X, Xiaoxia G, Fanqing L, Dingkun P, Guangyao M (2001) Preparation of asymmetric Ni/ceramic composite membrane by electroless plating. Colloids Surf A Physicochem Eng Asp 179(2-3):229–235
80.
Zurück zum Zitat Choa Y-H, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1-2):12–19 Choa Y-H, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1-2):12–19
81.
Zurück zum Zitat Cho Y, Choi G, Kim D (2006) A method to fabricate field emission tip arrays by electrocodeposition of single-wall carbon nanotubes and nickel. Electrochem Solid-State Lett 9(3):G107–G110 Cho Y, Choi G, Kim D (2006) A method to fabricate field emission tip arrays by electrocodeposition of single-wall carbon nanotubes and nickel. Electrochem Solid-State Lett 9(3):G107–G110
82.
Zurück zum Zitat Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644 Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644
83.
Zurück zum Zitat Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surf Coat Technol 201(24):9491–9496 Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surf Coat Technol 201(24):9491–9496
84.
Zurück zum Zitat Sung-Kyu K, Tae-Sung O (2011) Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans Nonferrous Metals Soc China 21:s68–s72 Sung-Kyu K, Tae-Sung O (2011) Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans Nonferrous Metals Soc China 21:s68–s72
85.
Zurück zum Zitat Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574 Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574
86.
Zurück zum Zitat Ren Z, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107 Ren Z, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107
87.
Zurück zum Zitat Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8(1):51–54 Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8(1):51–54
88.
Zurück zum Zitat Kim TA, Oh SM, Nahm KS, Mo YH (2006) Prepara@on of Silicon-CNT (Carbon Nano Tube) Composites for Anode in Lithium SecondaryBaAeries.The Electrochemical Society 163 Kim TA, Oh SM, Nahm KS, Mo YH (2006) Prepara@on of Silicon-CNT (Carbon Nano Tube) Composites for Anode in Lithium SecondaryBaAeries.The Electrochemical Society 163
89.
Zurück zum Zitat Wang YH, Li YH, Lu J, Zhang JB, Huang H (2006) Microstructure and thermal characteris@c of Si-coated mul@-walled carbon nanotubes.Nanotechnology 17(15): 3817 Wang YH, Li YH, Lu J, Zhang JB, Huang H (2006) Microstructure and thermal characteris@c of Si-coated mul@-walled carbon nanotubes.Nanotechnology 17(15): 3817
90.
Zurück zum Zitat Koziol K, Shaffer M, Windle A (2005) Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv Mater 17(6):760–763 Koziol K, Shaffer M, Windle A (2005) Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv Mater 17(6):760–763
91.
Zurück zum Zitat Friedrichs S et al (2005) Single-chirality multi-walled carbon nanotubes. Microsc Microanal 11(S02):1536–1537 Friedrichs S et al (2005) Single-chirality multi-walled carbon nanotubes. Microsc Microanal 11(S02):1536–1537
92.
Zurück zum Zitat Ducati C, Koziol K, Friedrichs S, Yates TJV, Shaffer MS, Midgley PA, Windle AH (2006) Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2(6):774–784 Ducati C, Koziol K, Friedrichs S, Yates TJV, Shaffer MS, Midgley PA, Windle AH (2006) Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2(6):774–784
93.
Zurück zum Zitat Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623 Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623
94.
Zurück zum Zitat Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131 Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131
95.
Zurück zum Zitat Montazeri A, Montazeri N, Pourshamsian K, Tcharkhtchi A (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16(7):465–476 Montazeri A, Montazeri N, Pourshamsian K, Tcharkhtchi A (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16(7):465–476
96.
Zurück zum Zitat Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M (2010) Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano 4(6):3063–3072 Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M (2010) Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano 4(6):3063–3072
97.
Zurück zum Zitat Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428 Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428
98.
Zurück zum Zitat Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10):1898–1905 Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10):1898–1905
99.
Zurück zum Zitat Wang Q, Han Y, Wang Y, Qin Y, Guo ZX (2008) Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. J Phys Chem B 112(24):7227–7233 Wang Q, Han Y, Wang Y, Qin Y, Guo ZX (2008) Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. J Phys Chem B 112(24):7227–7233
100.
Zurück zum Zitat White B, Banerjee S, O'Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690 White B, Banerjee S, O'Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690
101.
Zurück zum Zitat Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15(3):737–748 Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15(3):737–748
102.
Zurück zum Zitat Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282(5-6):429–434 Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282(5-6):429–434
103.
Zurück zum Zitat Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P (2009) Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113(48):20599–20605 Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P (2009) Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113(48):20599–20605
104.
Zurück zum Zitat Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 8(40):1373–1376 Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 8(40):1373–1376
105.
Zurück zum Zitat Li H, Guan L, Shi Z, Gu Z (2004) Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B 108(15):4573–4575 Li H, Guan L, Shi Z, Gu Z (2004) Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B 108(15):4573–4575
106.
Zurück zum Zitat Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758 Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758
107.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603
108.
Zurück zum Zitat Wilson T, Tyburski A, DePies MR, Vilches OE, Becquet D, Bienfait M (2002) Adsorption of H2 and D2 on carbon nanotube bundles. J Low Temp Phys 126(1-2):403–408 Wilson T, Tyburski A, DePies MR, Vilches OE, Becquet D, Bienfait M (2002) Adsorption of H2 and D2 on carbon nanotube bundles. J Low Temp Phys 126(1-2):403–408
109.
Zurück zum Zitat Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083–2089 Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083–2089
110.
Zurück zum Zitat Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025–1062 Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025–1062
111.
Zurück zum Zitat ChhowallaM A, Amaratunga G (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507 ChhowallaM A, Amaratunga G (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507
112.
Zurück zum Zitat Vittori Antisari M (2003) R. Marazzi, and R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41(12):2393–2401 Vittori Antisari M (2003) R. Marazzi, and R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41(12):2393–2401
113.
Zurück zum Zitat Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H, Li Y (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49(14):4792–4800 Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H, Li Y (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49(14):4792–4800
114.
Zurück zum Zitat Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75(20):3087–3089 Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75(20):3087–3089
115.
Zurück zum Zitat Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487 Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487
116.
Zurück zum Zitat Rinzler A et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67(1):29–37 Rinzler A et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67(1):29–37
117.
Zurück zum Zitat Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1-2):49–54 Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1-2):49–54
118.
Zurück zum Zitat Zhang Y, Gu H, Iijima S (1998) Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl Phys Lett 73(26):3827–3829 Zhang Y, Gu H, Iijima S (1998) Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl Phys Lett 73(26):3827–3829
119.
Zurück zum Zitat Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867 Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867
120.
Zurück zum Zitat Suárez M et al (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Ertuğ B (ed) Sintering Applications. InTech, Rijeka Ch. 13 Suárez M et al (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Ertuğ B (ed) Sintering Applications. InTech, Rijeka Ch. 13
121.
Zurück zum Zitat Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838 Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838
122.
Zurück zum Zitat Matsugi K (1995) Effect of direct current pulse discharge on specific resistivity of copper and iron powder compacts. J Jpn Inst Metals 59:740–745 Matsugi K (1995) Effect of direct current pulse discharge on specific resistivity of copper and iron powder compacts. J Jpn Inst Metals 59:740–745
123.
Zurück zum Zitat Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927 Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927
124.
Zurück zum Zitat Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443(1-2):25–32 Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443(1-2):25–32
125.
Zurück zum Zitat Kim KT, et al (2004) Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders. MRS Online Proceedings Library Archive, 821 Kim KT, et al (2004) Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders. MRS Online Proceedings Library Archive, 821
126.
Zurück zum Zitat Majkic G, Chen Y (2006) Proc. 47th AiAA Conf., Newport. Rhode Island 7:1–5. Majkic G, Chen Y (2006) Proc. 47th AiAA Conf., Newport. Rhode Island 7:1–5.
127.
Zurück zum Zitat Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A 696:10–25 Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A 696:10–25
128.
Zurück zum Zitat Adegbenjo A et al (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129 Adegbenjo A et al (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129
129.
Zurück zum Zitat Okoro AM, Machaka R, Lephuthing SS, Awotunde MA, Oke SR, Falodun OE, Olubambi PA (2019) Dispersion characteristics, interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J Alloys Compd 785:356–366 Okoro AM, Machaka R, Lephuthing SS, Awotunde MA, Oke SR, Falodun OE, Olubambi PA (2019) Dispersion characteristics, interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J Alloys Compd 785:356–366
130.
Zurück zum Zitat Adegbenjo AO, Obadele BA, Olubambi PA (2018) Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering. J Alloys Compd 749:818–833 Adegbenjo AO, Obadele BA, Olubambi PA (2018) Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering. J Alloys Compd 749:818–833
131.
Zurück zum Zitat Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J, Su Y, Li Z, Zhang D (2017) Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf 96:57–66 Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J, Su Y, Li Z, Zhang D (2017) Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf 96:57–66
132.
Zurück zum Zitat Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48 Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48
133.
Zurück zum Zitat Groven LJ, Puszynski JA (2012) Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites. Chem Eng J 183:515–525 Groven LJ, Puszynski JA (2012) Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites. Chem Eng J 183:515–525
134.
Zurück zum Zitat Chang S-Y, Lin S-J (1997) Processing stainless steel fibre reinforced NiAl matrix composites by reactive hot pressing. J Mater Sci 32(19):5127–5135 Chang S-Y, Lin S-J (1997) Processing stainless steel fibre reinforced NiAl matrix composites by reactive hot pressing. J Mater Sci 32(19):5127–5135
135.
Zurück zum Zitat Hunt EM, Plantier KB, Pantoya ML (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Mater 52(11):3183–3191 Hunt EM, Plantier KB, Pantoya ML (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Mater 52(11):3183–3191
Metadaten
Titel
Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties
verfasst von
Olusoji Oluremi Ayodele
Mary Ajimegoh Awotunde
Mxolisi Brendon Shongwe
Adewale Oladapo Adegbenjo
Bukola Joseph Babalola
Ayorinde Tayo Olanipekun
Peter Apata Olubambi
Publikationsdatum
20.07.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-12/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04095-1

Weitere Artikel der Ausgabe 9-12/2019

The International Journal of Advanced Manufacturing Technology 9-12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.