Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2017

03.01.2017 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Carbon nanotubes/vanadium oxide composites as cathode materials for lithium-ion batteries

verfasst von: Xing Liang, Guohua Gao, Yindan Liu, Zeyuan Ge, Pengliang Leng, Guangming Wu

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The carbon nanotubes/vanadium oxide composites have been prepared through a facile hydrothermal method. Morphology features of the samples are investigated by field-emission scanning electron microscope. Raman and X-ray diffraction patterns confirm the formation of phase structure. Thermogravimetric analysis was used to quantify the content of carbon nanotube in the composites. When used as cathode materials for lithium-ion batteries, the composites exhibit improved electrochemical performance compared to electrode materials free of carbon nanotubes. V2O5/carbon nanotubes can deliver a good capacity of 196.8 mA h g−1 at a current density of 100 mA g−1 after 50 cycles. However, the electrode materials free of carbon nanotubes (V2O5) can reach a capacity of 171 mA h g−1 at the same conditions. Moreover, V2O5/carbon nanotubes present a higher capacity than that of V2O5 under the same rate conditions. The improved electrochemical performance can be attributed to the fact that the carbon nanotubes in the V2O5/carbon nanotube composites can effectively facilitate ionic diffusion by raising the electrical conductivity.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-016-4293-8/MediaObjects/10971_2016_4293_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
2.
Zurück zum Zitat Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRef Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRef
3.
Zurück zum Zitat Tang Y, Zhang Y, Deng J, Qi D, Leow WR, Wei J, Yin S, Dong Z, Yazami R, Chen Z, Chen X (2014) Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew Chem Int Ed 53(49):13488–13492CrossRef Tang Y, Zhang Y, Deng J, Qi D, Leow WR, Wei J, Yin S, Dong Z, Yazami R, Chen Z, Chen X (2014) Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew Chem Int Ed 53(49):13488–13492CrossRef
4.
Zurück zum Zitat Qie L, Chen W-M, Wang Z-H, Shao Q-G, Li X, Yuan L-X, Hu X-L, Zhang W-X, Huang Y-H (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050CrossRef Qie L, Chen W-M, Wang Z-H, Shao Q-G, Li X, Yuan L-X, Hu X-L, Zhang W-X, Huang Y-H (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050CrossRef
5.
Zurück zum Zitat Kim DK, Muralidharan P, Lee H-W, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8(11):3948–3952CrossRef Kim DK, Muralidharan P, Lee H-W, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8(11):3948–3952CrossRef
6.
Zurück zum Zitat Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/Carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47(39):7461–7465CrossRef Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/Carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47(39):7461–7465CrossRef
7.
Zurück zum Zitat Wang S, Li S, Sun Y, Feng X, Chen C (2011) Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ Sci 4(8):2854–2857CrossRef Wang S, Li S, Sun Y, Feng X, Chen C (2011) Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ Sci 4(8):2854–2857CrossRef
8.
Zurück zum Zitat Pandey GP, Liu T, Brown E, Yang Y, Li Y, Sun XS, Fang Y, Li J (2016) Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors. ACS Appl Mater Interfaces 8(14):9200–9210CrossRef Pandey GP, Liu T, Brown E, Yang Y, Li Y, Sun XS, Fang Y, Li J (2016) Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors. ACS Appl Mater Interfaces 8(14):9200–9210CrossRef
9.
Zurück zum Zitat Muster J, Kim GT, Krstić V, Park JG, Park YW, Roth S, Burghard M (2000) Electrical transport through individual vanadium pentoxide nanowires. Adv Mater 12(6):420–424CrossRef Muster J, Kim GT, Krstić V, Park JG, Park YW, Roth S, Burghard M (2000) Electrical transport through individual vanadium pentoxide nanowires. Adv Mater 12(6):420–424CrossRef
10.
Zurück zum Zitat Wang Y, Takahashi K, Lee KH, Cao GZ (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater 16(9):1133–1144CrossRef Wang Y, Takahashi K, Lee KH, Cao GZ (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater 16(9):1133–1144CrossRef
11.
Zurück zum Zitat Singhal A, Skandan G, Amatucci G, Badway F, Ye N, Manthiram A, Ye H, Xu JJ (2004) Nanostructured electrodes for next generation rechargeable electrochemical devices. J Power Sources 129(1):38–44CrossRef Singhal A, Skandan G, Amatucci G, Badway F, Ye N, Manthiram A, Ye H, Xu JJ (2004) Nanostructured electrodes for next generation rechargeable electrochemical devices. J Power Sources 129(1):38–44CrossRef
12.
Zurück zum Zitat Pan AQ, Wu HB, Zhang L, Lou XW (2013) Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ Sci 6(5):1476–1479CrossRef Pan AQ, Wu HB, Zhang L, Lou XW (2013) Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ Sci 6(5):1476–1479CrossRef
13.
Zurück zum Zitat Wang S, Lu Z, Wang D, Li C, Chen C, Yin Y (2011) Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J Mater Chem 21(17):6365–6369CrossRef Wang S, Lu Z, Wang D, Li C, Chen C, Yin Y (2011) Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J Mater Chem 21(17):6365–6369CrossRef
14.
Zurück zum Zitat Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755CrossRef Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755CrossRef
15.
Zurück zum Zitat Zhang L, Zhao K, Xu W, Meng J, He L, An Q, Xu X, Luo Y, Zhao T, Mai L (2014) Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv 4(63):33332–33337CrossRef Zhang L, Zhao K, Xu W, Meng J, He L, An Q, Xu X, Luo Y, Zhao T, Mai L (2014) Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv 4(63):33332–33337CrossRef
16.
Zurück zum Zitat An Q, Wei Q, Mai L, Fei J, Xu X, Zhao Y, Yan M, Zhang P, Huang S (2013) Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys Chem Chem Phys 15(39):16828–16833CrossRef An Q, Wei Q, Mai L, Fei J, Xu X, Zhao Y, Yan M, Zhang P, Huang S (2013) Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys Chem Chem Phys 15(39):16828–16833CrossRef
17.
Zurück zum Zitat Liang S, Hu Y, Nie Z, Huang H, Chen T, Pan A, Cao G (2015) Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy 13:58–66CrossRef Liang S, Hu Y, Nie Z, Huang H, Chen T, Pan A, Cao G (2015) Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy 13:58–66CrossRef
18.
Zurück zum Zitat Li G, Qiu Y, Hou Y, Li H, Zhou L, Deng H, Zhang Y (2015) Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage. J Mater Chem A 3(3):1103–1109CrossRef Li G, Qiu Y, Hou Y, Li H, Zhou L, Deng H, Zhang Y (2015) Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage. J Mater Chem A 3(3):1103–1109CrossRef
19.
Zurück zum Zitat Tang Y, Rui X, Zhang Y, Lim TM, Dong Z, Hng HH, Chen X, Yan Q, Chen Z (2013) Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J Mater Chem A 1(1):82–88CrossRef Tang Y, Rui X, Zhang Y, Lim TM, Dong Z, Hng HH, Chen X, Yan Q, Chen Z (2013) Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J Mater Chem A 1(1):82–88CrossRef
20.
Zurück zum Zitat Xu Y, Dunwell M, Fei L, Fu E, Lin Q, Patterson B, Yuan B, Deng S, Andersen P, Luo H, Zou G (2014) Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries. ACS Appl Mater Interfaces 6(22):20408–20413CrossRef Xu Y, Dunwell M, Fei L, Fu E, Lin Q, Patterson B, Yuan B, Deng S, Andersen P, Luo H, Zou G (2014) Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries. ACS Appl Mater Interfaces 6(22):20408–20413CrossRef
21.
Zurück zum Zitat Rui X, Zhu J, Sim D, Xu C, Zeng Y, Hng HH, Lim TM, Yan Q (2011) Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3(11):4752–4758CrossRef Rui X, Zhu J, Sim D, Xu C, Zeng Y, Hng HH, Lim TM, Yan Q (2011) Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3(11):4752–4758CrossRef
22.
Zurück zum Zitat Sathiya M, Prakash A, Ramesha K, Tarascon JM, Shukla A (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299CrossRef Sathiya M, Prakash A, Ramesha K, Tarascon JM, Shukla A (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299CrossRef
23.
Zurück zum Zitat Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RRN, Rocha RP, Faria JL, Pereira MFR, Figueiredo JL, Silva AMT, Falaras P (2014) Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 69:311–326CrossRef Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RRN, Rocha RP, Faria JL, Pereira MFR, Figueiredo JL, Silva AMT, Falaras P (2014) Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 69:311–326CrossRef
24.
Zurück zum Zitat Ding S, Chen JS, Lou XW (2011) One-Dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv Funct Mater 21(21):4120–4125CrossRef Ding S, Chen JS, Lou XW (2011) One-Dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv Funct Mater 21(21):4120–4125CrossRef
25.
Zurück zum Zitat Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH (2015) Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2):2018–2027CrossRef Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH (2015) Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2):2018–2027CrossRef
26.
Zurück zum Zitat Annamalai KP, Gao J, Liu L, Mei J, Lau W, Tao Y (2015) Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance. J Mater Chem A 3(22):11740–11744CrossRef Annamalai KP, Gao J, Liu L, Mei J, Lau W, Tao Y (2015) Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance. J Mater Chem A 3(22):11740–11744CrossRef
27.
Zurück zum Zitat Ming J, Wu Y, Yu Y, Zhao F (2011) Steaming multiwalled carbon nanotubesvia acid vapour for controllable nanoengineering and the fabrication of carbon nanoflutes. Chem Commun 47(18):5223–5225CrossRef Ming J, Wu Y, Yu Y, Zhao F (2011) Steaming multiwalled carbon nanotubesvia acid vapour for controllable nanoengineering and the fabrication of carbon nanoflutes. Chem Commun 47(18):5223–5225CrossRef
28.
Zurück zum Zitat Liang X, Gao G, Wu G, Yang H (2016) Synthesis and characterization of novel hierarchical starfish-like vanadium oxide and their electrochemical performance. Electrochim Acta 188:625–635CrossRef Liang X, Gao G, Wu G, Yang H (2016) Synthesis and characterization of novel hierarchical starfish-like vanadium oxide and their electrochemical performance. Electrochim Acta 188:625–635CrossRef
29.
Zurück zum Zitat Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem A 3(5):1828–1832CrossRef Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem A 3(5):1828–1832CrossRef
30.
Zurück zum Zitat Wang L, Zhuo L, Cheng H, Zhang C, Zhao F (2015) Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J Power Sources 283(0):289–299CrossRef Wang L, Zhuo L, Cheng H, Zhang C, Zhao F (2015) Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J Power Sources 283(0):289–299CrossRef
31.
Zurück zum Zitat Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRef Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRef
32.
Zurück zum Zitat Zhuo L, Wu Y, Ming J, Wang L, Yu Y, Zhang X, Zhao F (2013) Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J Mater Chem A 1(4):1141–1147CrossRef Zhuo L, Wu Y, Ming J, Wang L, Yu Y, Zhang X, Zhao F (2013) Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J Mater Chem A 1(4):1141–1147CrossRef
33.
Zurück zum Zitat Fang W-C (2008) Synthesis and electrochemical characterization of vanadium Oxide/Carbon nanotube composites for supercapacitors. J Phys Chem C 112(30):11552–11555CrossRef Fang W-C (2008) Synthesis and electrochemical characterization of vanadium Oxide/Carbon nanotube composites for supercapacitors. J Phys Chem C 112(30):11552–11555CrossRef
34.
Zurück zum Zitat Kim T, Shin J, You T-S, Lee H, Kim J (2015) Thermally controlled V2O5 nanoparticles as cathode materials for lithium-ion batteries with enhanced rate capability. Electrochim Acta 164(0):227–234CrossRef Kim T, Shin J, You T-S, Lee H, Kim J (2015) Thermally controlled V2O5 nanoparticles as cathode materials for lithium-ion batteries with enhanced rate capability. Electrochim Acta 164(0):227–234CrossRef
35.
Zurück zum Zitat Wei Q, Jiang Z, Tan S, Li Q, Huang L, Yan M, Zhou L, An Q, Mai L (2015) Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl Mater Interfaces 7(33):18211–18217CrossRef Wei Q, Jiang Z, Tan S, Li Q, Huang L, Yan M, Zhou L, An Q, Mai L (2015) Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl Mater Interfaces 7(33):18211–18217CrossRef
36.
Zurück zum Zitat Wu Y, Gao G, Yang H, Bi W, Liang X, Zhang Y, Zhang G, Wu G (2015) Controlled synthesis of V2O5/MWCNT core/shell hybrid aerogels through a mixed growth and self-assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J Mater Chem A 3(30):15692–15699CrossRef Wu Y, Gao G, Yang H, Bi W, Liang X, Zhang Y, Zhang G, Wu G (2015) Controlled synthesis of V2O5/MWCNT core/shell hybrid aerogels through a mixed growth and self-assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J Mater Chem A 3(30):15692–15699CrossRef
37.
Zurück zum Zitat Pan A, Zhang J-G, Nie Z, Cao G, Arey BW, Li G, Liang S-q, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20(41):9193–9199CrossRef Pan A, Zhang J-G, Nie Z, Cao G, Arey BW, Li G, Liang S-q, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20(41):9193–9199CrossRef
38.
Zurück zum Zitat Zhou X, Wu G, Wu J, Yang H, Wang J, Gao G (2014) Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Phys Chem Chem Phys 16(9):3973–3982CrossRef Zhou X, Wu G, Wu J, Yang H, Wang J, Gao G (2014) Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Phys Chem Chem Phys 16(9):3973–3982CrossRef
39.
Zurück zum Zitat Chen L, Gu X, Jiang X, Wang N, Yue J, Xu H, Yang J, Qian Y (2014) Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries. J Power Sources 272(0):991–996CrossRef Chen L, Gu X, Jiang X, Wang N, Yue J, Xu H, Yang J, Qian Y (2014) Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries. J Power Sources 272(0):991–996CrossRef
Metadaten
Titel
Carbon nanotubes/vanadium oxide composites as cathode materials for lithium-ion batteries
verfasst von
Xing Liang
Guohua Gao
Yindan Liu
Zeyuan Ge
Pengliang Leng
Guangming Wu
Publikationsdatum
03.01.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4293-8

Weitere Artikel der Ausgabe 1/2017

Journal of Sol-Gel Science and Technology 1/2017 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Synthesis and phase formation in MxOy–ZrO2 nanosized precursors (M = Zn2+, Cd2+, Pb2+, Bi3+)

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Preparation and gas sensing properties of ZnO hollow microspheres

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Reversible photochromic effect in the TiO2—polymer hybrid system

Original Paper: Characterization methods of sol-gel and hybrid materials

Effect of the method and impregnation time on the surface acidity of zirconia modified with boron

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Enhancement of temperature coefficient of resistance (TCR) and Magneto-resistance (MR) in La1–x Ca x MnO3:Ag0.2 polycrystalline composites

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.