Skip to main content
Erschienen in:

Open Access 21.06.2024 | Research Paper

Card-based Cryptography with a Standard Deck of Cards, Revisited: Efficient Protocols in the Private Model

verfasst von: Takeshi Nakai, Keita Iwanari, Tomoki Ono, Yoshiki Abe, Yohei Watanabe, Mitsugu Iwamoto

Erschienen in: New Generation Computing | Ausgabe 3/2024

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel taucht in den Bereich der kartenbasierten Kryptographie ein und konzentriert sich auf die Verwendung eines Standardkartenspiels im privaten Modell. Es führt effiziente Protokolle für grundlegende Logikgatter wie AND, OR und XOR ein, die weniger Karten erfordern als herkömmliche Methoden. Bemerkenswert ist, dass die Verfasser ein bahnbrechendes Abstimmungsprotokoll mit drei Mehrheiten präsentieren, bei dem nur drei Karten verwendet werden, was eine deutliche Verbesserung gegenüber bestehenden Methoden darstellt. Die Protokolle sind so konzipiert, dass sie robust sind, keine Zufälligkeit der Spieler erfordern und daher sowohl praktisch als auch sicher sind. Der Artikel bietet eine umfassende Untersuchung dieser Protokolle, ihrer Konstruktion und ihrer Sicherheitsnachweise und liefert wertvolle Erkenntnisse für Experten auf dem Gebiet der Kryptographie und sicheren Berechnung.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

1.1 Backgrounds

Secure computation is a cryptographic protocol that enables mutually distrustful parties to compute a function jointly while keeping their inputs secret [6, 29]. While general cryptographic protocols are supposed to be implemented on computers, there is a line of work to realize it using physical objects with manual operations. Such protocols are suitable as educational and recreational tools since they allow for hands-on and visual understanding of the procedures.
Card-based cryptography is a variant of secure computation, which is realized with physical cards [4, 5, 17]. Most of the existing works for card-based cryptography are based on two-colored cards, e.g., [5, 8, 16, 18, 19, 23, 28]. They use two types of cards such that the faces have different colors, black https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq1_HTML.gif and red https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq2_HTML.gif , and the same type of cards are indistinguishable. Their backsides have the same suit https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq3_HTML.gif . Besides, some works use a standard deck of cards (or playing cards), such as typically used to play the poker game [7, 9, 15, 24]. Unlike two-colored cards, each playing card in a deck is identifiable since every card has a unique face pattern. Hence, it requires different techniques to construct a protocol using playing cards than two-colored ones.
In addition to the card types, we can classify card-based protocols with operating models. There are two types of operating models in card-based cryptography: public and private models. The public model supposes that all operations are done publicly. The shuffle is a key operation to achieve the privacy of players’ inputs under the condition that all operations are made public. It enables players to generate a random number that no players can identify in a public area. In this model, using face-down cards is the only way to express players’ inputs in a secret state. Since at least two cards are necessary for an arbitrary representation of a binary value, an n-bit input protocol must use at least 2n cards.
The private model allows players to operate cards privately [13, 22], such as by hiding cards behind their backs. Precisely, instead of the shuffle, this model uses a private permutation, an operation to permute a card order privately, and a communication, an operation to pass cards to another player. It is known that this model allows us to break the lower bound regarding the number of cards in the public model. This is thanks to the fact that players can express their inputs secretly by using private permutations depending on the values. Indeed, several works showed n-bit input protocols with less than 2n cards [2, 3, 20, 21, 25]. These results, however, are only for the two-colored card setting. Hence, it is non-trivial whether the private model can break the lower bound in the playing card setting.

1.2 Our Contribution

This paper is devoted to showing that the private model can break the lower bound of the public model in the playing card setting. For some specific functions, we demonstrate that an n-bit input protocol can be realized with less than 2n playing cards: We first show that a two-bit input AND protocol can be realized with three cards (see Table 1). Note that the public model requires at least four cards to implement the protocol. Afterwards, we show that a two-bit input OR protocol can be realized by applying the De Morgan’s law to this protocol. Furthermore, we present a two-bit input XOR protocol using two cards. Based on the above AND and OR protocols, we construct a three-input majority voting protocol using only three cards (see Table 2). This is the first work to realize a three-input majority voting protocol using playing cards in the private model.
Notably, none of our proposed protocols depend on players’ private randomness. That is, there is no operation that generates a random number. This is the preferable property since a random generation is generally a very costly operation.
Table 1
An efficiency comparison among secure AND protocols with playing cards. PPs and Rand. Gens. stand for private permutations and randomness generations, respectively
Protocol
Model
#Cards
#Shuffles
#PPs
#Comms.
#Rand. Gens.
Niemi et al. [24]
Public
6
9.5
9.5
Mizuki [14]
Public
8
4
4
Koch et al. [7]
Public
4
6
6
Koyama et al. [9]
Public
6
8.5
8.5
Manabe et al. [11]
Private
4
8
7
5
This work (Protocol 2)
Private
3
2
1
0
Table 2
An efficiency comparison between our protocol and the existing three-input majority voting protocols with playing cards
Protocol
Model
#Cards
#Shuffles
#PPs
#Comms.
#Rand. Gens.
Koyama et al. [10]
Public
6
8.5
8.5
This work (Protocol 5)
Private
3
4
4
0

2 Preliminaries

2.1 Settings and Notations

We consider an honest-but-curious adversary that exactly follows a protocol but is curious to learn anything more from rightfully obtained information. A protocol fulfills privacy if an arbitrary player cannot learn any additional information than the output from his/her view of the protocol.
Two-colored cards. Card-based cryptography based on two-colored cards uses black https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq4_HTML.gif and red https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq5_HTML.gif cards. (For simplicity, we sometimes omit the frame and write them as \(\clubsuit \) and \(\heartsuit \).) Their back sides have the same pattern and indistinguishable, described as https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq8_HTML.gif .
Playing cards. Excluding the joker, playing cards consist of 52 distinct cards. To represent a card deck of playing cards, we use the following notation:
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_Equ3_HTML.png
As in the two-colored card setting, all cards have the same pattern https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq9_HTML.gif on their backs.

2.2 Operating Models

2.2.1 Public Model

In the public model, players perform all card operations in a public area, such as on the table. A protocol based on this model consists of three operations: permutation, reverse, and shuffle. The permutation is to change a card order deterministically. The reverse is an operation to change the face of a card. The shuffle is a probabilistic permutation to a card order, which is a key ingredient to achieve privacy under the setting that all operations are run publicly. While a shuffle is performed in a public area, it assumes that the permutation result cannot be identified for all players, including the player who runs it. A known method of implementing a shuffle is repeating permutation with sufficient times. Thus, the shuffle is the most costly operation. The computational cost of a protocol is evaluated with the number of shuffles.
In the public model, using face-down cards is the only way to express a player’s input value privately. Also, a party must use at least two cards to express an arbitrary Boolean value, such as the following encoding:
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_Equ4_HTML.png
where \(1 \le i<j \le 52\). We call a face-down cards expressing a Boolean value a commitment. Note that, even if we encode a bit using a single card, such as \(\clubsuit =0,\,\heartsuit =1\), a player must hold two cards to represent an arbitrary Boolean value. Thus, 2n cards are necessary to realize an n-bit input protocol.

2.2.2 Private Model

This model allows players to permute cards secretly, such as by hiding them behind their backs. It consists of the following operations.
  • Public permutation: permuting a card order publicly.
  • Private permutation (PP): permuting a card order privately.
  • Public reverse: changing the face of a card publicly.
  • Communication: handing over cards to another player.
The computational cost is evaluated by the number of PPs and communications. Although the PP allows players to permute a card order depending on their randomness, generating a random number puts a burden on the player. From this viewpoint, we further add the number of random generation processes to the efficiency evaluation.
We can realize a shuffle with the combination of PPs and communications [22]. Thus, a protocol based on the public model can be executed on the private model by converting each shuffle to a combination of PPs and communications. On the other hand, since a PP enables players’ malicious behaviors, the private model needs to assume the semi-honest model that deals with only honest-but-curious adversaries.1
The private model allows a player to express his/her input using PP instead of the commitment. Thanks to this fact, the private model can break the lower bounds 2n regarding the number of cards in the public model. As an example, we show Marcedone et al.’s work [13] for secure AND protocol. Protocol 1 shows the procedure. Since a secure AND protocol is 2-bit inputs, four cards are necessary to realize the protocol in the public model. On the other hand, Protocol 1 breaks the lower bound and uses only three cards by using a PP-based input. See steps 1 and 3. Although Alice uses a commitment to express her input, Bob expresses his input by a PP and does not use any additional cards. It is known that the lower bound can be broken for various protocols other than secure AND protocol using PPs [2, 3, 20, 21, 25].

3 Proposed Protocols for Logic Gates with Playing Cards

This section shows three protocols based on playing cards; three-card AND, three-card OR, and two-card XOR protocols. In this section, let Alice and Bob hold \(a,b \in \{0,1\}\), respectively.

3.1 Three-Card AND Protocol

We first show our three-card AND protocol, which is based on Protocol 1. Before presenting our construction, we observe the problems that arise when the cards in Protocol 1 are simply replaced by playing cards.
By replacing two club cards with https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq13_HTML.gif and a heart card with https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq14_HTML.gif , the first step becomes as follows:
Suppose that we thereafter apply the same steps as Protocol 1. In other words, Alice and Bob perform steps 2–4 in Protocol 1 after the above step 1.
Table 3 is the card order at step 4. See the left card of each row, which is the revealed card at the step. Since the card is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq19_HTML.gif only if \(a \wedge b =1\), the protocol fulfills the correctness. However, the protocol does not achieve the privacy. It is due to the fact that the reveal card has two patterns, i.e., https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq21_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq22_HTML.gif , when \(a\wedge b=0\). For instance, if the revealed card is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq24_HTML.gif , players can identify the inputs as \((a,b)=(0,1)\). To resolve this issue, we modify the protocol so that the revealed card is the same for the three cases regarding \(a \wedge b =0\).
We here observe the card order of the output phase, i.e., step 4, from Alice’s view, and realize the modification. Since Bob does not touch the right card, Alice can identify it as follows:
  • If \(a=0\), the right card is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq28_HTML.gif .
  • If \(a=1\), the right card is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq30_HTML.gif .
Note that, if \(a=0\), Alice knows that the output always becomes zero regardless of Bob’s input. We utilize this fact and modify the protocol so that Alice chooses https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq32_HTML.gif as the output when \(a=0\), i.e., she chooses the right card as the output if \(a=0\). That is, the modified protocol applies https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq35_HTML.gif to the output card representing \(a \wedge b=0\).
See Table 3, the card orders corresponding to \(a=1\) are as follows:
  • If \(b=0\), the card order is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq39_HTML.gif .
  • If \(b=1\), the card order is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq41_HTML.gif .
Since we assigned https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq42_HTML.gif as the output card to express \(a \wedge b=0\), it must be the output also when \((a,b)=(1,0)\). Thus, Alice chooses the center card as the output if \(a=1\) in our modification. As a result, https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq46_HTML.gif is always revealed when \(a \wedge b =0\). Also, only when \(a \wedge b =1\), https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq49_HTML.gif becomes the output card. In summary, our three-card AND protocol proceeds as in Protocol 2. Note that step 5 corresponds to additional Alice’s process discussed above.
Security Proof of Protocol 2. We first note that, in an AND protocol, a player who inputs 1 can uniquely identify the other player’s input from the output. For achieving the privacy, it is necessary to guarantee that a player whose input is 0 cannot identify the other player’s input. See Table 4 that shows the card order at step 6 of Protocol 2. The output card corresponding to \(a \wedge b=0\) is always https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq51_HTML.gif . That is, it is the same for the three cases, \((a,b)=(0,0),(0,1),(1,0)\). (Note that the output card is only card that is revealed in the protocol.) Hence, in the case of \(a=0\), Alice cannot tell whether \(b=0\) or not since she cannot distinguish between the two cases, \((a,b)=(0,0),(0,1)\). This is also true for Bob. In the case of \(b=0\), Bob cannot identify whether \((a,b)=(0,0)\) or \((a,b)=(1,0)\), and cannot learn anything about Alice’s input. Moreover, all operations depending on players’ inputs are hidden to the other players by the assumption of PP. Hence, no information beyond the output leaks from the process, and thus the protocol fulfills privacy. \(\square \)
Table 3
The card order at step 4 of naïve construction for AND protocol
a
b
Card order
0
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq60_HTML.gif
0
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq61_HTML.gif
1
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq62_HTML.gif
1
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq63_HTML.gif
Table 4
The card order at step 6 of Protocol 2
a
b
Card order
0
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq64_HTML.gif
0
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq65_HTML.gif
1
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq66_HTML.gif
1
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq67_HTML.gif

3.2 Three-Card OR Protocol

This subsection presents our three-card OR protocol, which is constructed based on the AND protocol. We aim to construct it such that the output format is the same as the AND protocol. That is, https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq86_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq87_HTML.gif represent \(a \vee b=0\) and \(a \vee b =1\), respectively. The format match is helpful to construct a three-input majority voting protocol, described in Sect. 4.
To derive from the AND protocol to an OR protocol, we use the De Morgan’s law, \(a \vee b = \lnot (\lnot a \wedge \lnot b)\). From the equation, we can construct an OR protocol by making the following two changes to the AND protocol.
I.
Negating the input values.
 
II.
Negating the output value.
 
Change I can be easily realized by which Alice and Bob inputs \(\lnot a\) and \(\lnot b\), respectively. (See Table 5 that shows the result of applying change I to Protocol 2.)
Table 5
The card order at step 6 of Protocol 2 applied change I
a
b
Card order
0
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq93_HTML.gif
0
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq94_HTML.gif
1
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq95_HTML.gif
1
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq96_HTML.gif
Table 6
The card order at step 6 of Protocol 3
a
b
Card order
0
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq97_HTML.gif
0
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq98_HTML.gif
1
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq99_HTML.gif
1
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq100_HTML.gif
Regarding change II, note that it is non-trivial to apply the negation operation to the output since we use a single card to express a bit.2 We realize the negation by interchanging the positions of https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq101_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq102_HTML.gif in the output phase. To realize the interchange, we swap https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq103_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq104_HTML.gif in Alice’s first card arrangement. By this swapping, the positions of https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq105_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq106_HTML.gif in the output phase are reversed, and we obtain the negation.
Protocol 3 shows our three-card OR protocol that is achieved by applying changes I and II to our three-card AND protocol. See step 1 that corresponds to change II. Compared to step 1 of Protocol 2, we can see that the placements of https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq107_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq108_HTML.gif are reversed. (Note that change I reverses the sequences of cards \(a=0\) and \(a=1\) in the step.)
See Table 6 that shows the card order at step 6. We can see the correctness from the table. Since we can confirm the privacy by the same way as Protocol 2, we omit the proof here.

3.3 Two-Card XOR Protocol

Nakai et al. [21] showed a two-card XOR protocol in the two-colored setting. Note that for protocols consisting of two cards, there is no difference between the two-colored and the playing-card settings. That is, by mapping cards as https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq111_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq112_HTML.gif , we can convert a protocol with two-colored cards into a protocol with the playing cards that achieves the same functionality. Protocol 4 presents the two-card XOR protocol realized by mapping cards of Nakai et al.’s protocol as the above.

4 Three-input Majority Voting Protocol with Three Playing Cards

This section shows our three-input majority voting protocol with three cards. In this section, let Alice, Bob, and Carol hold \(a,b,c \in \{0,1\}\), respectively. The function for three-input majority voting is formally described as:
$$\begin{aligned} \textsf{maj}(a,b,c) := \left\{ \begin{array}{lcl} 0 &{} \,\,\,\,\textrm{if}&{} a+b+c\le 1, \\ 1 &{} \,\,\,\,\textrm{if}&{} a+b+c\ge 2. \end{array} \right. \end{aligned}$$
(1)

4.1 Idea of Our Construction

Following Nakai et al.’s work [21], to construct a three-input majority voting protocol, we use the following equation:
$$\begin{aligned} \textsf{maj}(a,b,c) = \left\{ \begin{array}{lcl} a\wedge b &{} \,\,\,\,\textrm{if}&{} c=0, \\ a\vee b &{} \,\,\,\,\textrm{if}&{} c=1. \end{array} \right. \end{aligned}$$
(2)
That is, we obtain the protocol by constructing a protocol that outputs \(a \wedge b\) for \(c=0\) and \(a \vee b\) for \(c=1\).
Recall changes I and II used to convert the AND protocol into the OR protocol, described in Sect. 3.2. In our three-input majority voting protocol, Alice and Bob perform the same procedure as the AND protocol. Intuitively, Carol takes on the role of deciding whether or not to apply changes I and II to their protocol. That is, if \(c=0\), she does virtually nothing, and Alice and Bob run the AND protocol as is. Otherwise, Carol applies changes I and II to the AND protocol secretly, Alice and Bob run the OR protocol without realizing this fact. As a result, they can obtain \(a \wedge b\) or \(a \vee b\) according to Carol’s input as described in Eq. (2) without revealing Carol’s input.
As an important point, players can obtain \(a \wedge b\) and \(a \vee b\) as the same encoding, i.e., https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq123_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq124_HTML.gif express zero and one, respectively, for both cases. Thanks to this, Alice and Bob cannot tell whether the output corresponds to the AND or OR operation and do not learn Carol’s input from patterns of the output card.

4.2 Three-input Majority Voting Protocol

Protocol 5 shows our three-input majority voting protocol based on the idea, shown in the previous subsection. See step 1 that corresponds to change II. Indeed, in the case of \(c=0\), the card order at the end of step 3 is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq126_HTML.gif if \(a=0\) and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq128_HTML.gif otherwise. That is the same result as Alice’s first arrangement of Protocol 2. Similarly, in the case of \(c=1\), the card order at the end of step 3 is https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq130_HTML.gif if \(a=0\) and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq132_HTML.gif otherwise, which is the same result as Alice’s first arrangement of Protocol 3.
Step 9 corresponds to change I. That is, Carol’s permutation in step 9 with \(c=1\) realizes negations for Alice and Bob’s inputs in steps 5 and 7. Table 7 shows the card order at step 10 of Protocol 5. From the table, we can see that the card order for \(c=0\) (resp. \(c=1\)) is the same as the AND (resp. OR) protocol (see also Tables 4 and 6).
Table 7
The card order at step 10 of Protocol 5
a
b
Card order (\(c=0\))
Card order (\(c=1\))
0
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq138_HTML.gif
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq139_HTML.gif
0
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq140_HTML.gif
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq141_HTML.gif
1
0
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq142_HTML.gif
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq143_HTML.gif
1
1
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq144_HTML.gif
https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq145_HTML.gif
Security Proof of Protocol 5. The output card corresponding to \(\textsf{maj}(a,b,c)=0\) and \(\textsf{maj}(a,b,c)=1\) is always https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq148_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs00354-024-00269-y/MediaObjects/354_2024_269_IEq149_HTML.gif , respectively. Hence, players cannot get more information than the output from the revealed card at step 10. Moreover, all operations depending on players’ inputs are kept secret by the assumption of PP. Hence, no information beyond the output leaks from the process, and thus the protocol fulfills privacy. \(\square \)

5 Conclusion

This paper focused on card-based cryptography using a standard deck of cards in the private model. Using two-colored cards, it is known that the private model can break the lower bound regarding the number of cards in the public model. Our motivation was to show that we can break the lower bound based also on a deck of cards.
We first showed efficient protocols for two-input AND, OR, and XOR operations. Note that four cards are necessary to construct these protocols in the public model. Based on Marcedone et al.’s work [13], we constructed a three-card AND protocol. By applying De Morgan’s law to this protocol, we realized a three-card OR protocol. Also, we presented a two-card XOR protocol based on Nakai et al.’s work [21]. Furthermore, we proposed three-input majority voting protocols using only three cards. Based on Eq. (2), this protocol was constructed by the composition of our AND and OR protocols. As a notable feature, our protocols rely on no players’ randomness, i.e., there is no need to generate a random number in an arbitrary process.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP23H00468, JP23H00479, JP23K16880, JP23K17455, JP23K24846, JP23K21644, JP23K21668, JP22H03590, JP22KJ1362, JP21H03441, JP21H03395, and JP18H05289, JST CREST JPMJCR23M2, and MEXT Leading Initiative for Excellent Young Researchers.

Declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fußnoten
1
There are works to prevent malicious behaviors in the private model [1, 12, 26, 27].
 
2
If we use the two-card encoding as described in Sect. 2.2.1, the negation can be realized by swapping a commitment.
 
Literatur
1.
Zurück zum Zitat Abe, Y., Iwamoto, M., Ohta, K.: How to detect malicious behaviors in a card-based majority voting protocol with three inputs. In: 2020 International Symposium on Information Theory and Its Applications (ISITA), pp. 377–381 (2020) Abe, Y., Iwamoto, M., Ohta, K.: How to detect malicious behaviors in a card-based majority voting protocol with three inputs. In: 2020 International Symposium on Information Theory and Its Applications (ISITA), pp. 377–381 (2020)
2.
Zurück zum Zitat Abe, Y., Nakai, T., Kuroki, Y., Suzuki, S., Koga, Y., Watanabe, Y., Iwamoto, M., Ohta, K.: Efficient card-based majority voting protocols. New Gen. Comput. 40(1), 173–198 (2022)CrossRef Abe, Y., Nakai, T., Kuroki, Y., Suzuki, S., Koga, Y., Watanabe, Y., Iwamoto, M., Ohta, K.: Efficient card-based majority voting protocols. New Gen. Comput. 40(1), 173–198 (2022)CrossRef
3.
Zurück zum Zitat Abe, Y., Nakai, T., Watanabe, Y., Iwamoto, M., Ohta, K.: A computationally efficient card-based majority voting protocol with fewer cards in the private model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E106.A(3), 315–324 (2023) Abe, Y., Nakai, T., Watanabe, Y., Iwamoto, M., Ohta, K.: A computationally efficient card-based majority voting protocol with fewer cards in the private model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E106.A(3), 315–324 (2023)
4.
Zurück zum Zitat Crépeau, C., Kilian, J.: Discreet solitary games. In: Advances in Cryptology—CRYPTO ’93, 13th Annual International Cryptology Conference, Santa Barbara, California, USA, August 22–26, 1993, Proceedings, pp. 319–330 (1993) Crépeau, C., Kilian, J.: Discreet solitary games. In: Advances in Cryptology—CRYPTO ’93, 13th Annual International Cryptology Conference, Santa Barbara, California, USA, August 22–26, 1993, Proceedings, pp. 319–330 (1993)
5.
Zurück zum Zitat den Boer, B.: More efficient match-making and satisfiability: the five card trick. In: Advances in Cryptology—EUROCRYPT ’89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen, Belgium, April 10–13, 1989, Proceedings, pp. 208–217 (1989) den Boer, B.: More efficient match-making and satisfiability: the five card trick. In: Advances in Cryptology—EUROCRYPT ’89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen, Belgium, April 10–13, 1989, Proceedings, pp. 208–217 (1989)
6.
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pp. 218–229. Association for Computing Machinery (1987) Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pp. 218–229. Association for Computing Machinery (1987)
7.
Zurück zum Zitat Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. In: Advances in Cryptology—ASIACRYPT 2019, pp. 488–517. Springer International Publishing, Cham (2019) Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. In: Advances in Cryptology—ASIACRYPT 2019, pp. 488–517. Springer International Publishing, Cham (2019)
8.
Zurück zum Zitat Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Advances in Cryptology—ASIACRYPT 2015—21st International Conference on the Theory and Application of Cryptology and Information Security, Proceedings, Part I, pp. 783–807 (2015) Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Advances in Cryptology—ASIACRYPT 2015—21st International Conference on the Theory and Application of Cryptology and Information Security, Proceedings, Part I, pp. 783–807 (2015)
9.
Zurück zum Zitat Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input and protocol with a standard deck of minimal cards. In: Computer Science—Theory and Applications: 16th International Computer Science Symposium, CSR 2021, Proceedings, pp. 242–256. Springer, Berlin (2021) Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input and protocol with a standard deck of minimal cards. In: Computer Science—Theory and Applications: 16th International Computer Science Symposium, CSR 2021, Proceedings, pp. 242–256. Springer, Berlin (2021)
10.
Zurück zum Zitat Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: Three-input and and majority protocols with a standard deck of cards. In: Proceedings of 2021 Symposium on Cryptography and Information Security (SCIS2021), pp. 2F2–2 (2021) (in Japanese) Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: Three-input and and majority protocols with a standard deck of cards. In: Proceedings of 2021 Symposium on Cryptography and Information Security (SCIS2021), pp. 2F2–2 (2021) (in Japanese)
11.
Zurück zum Zitat Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of cards using private operations. In: Theoretical Aspects of Computing—ICTAC 2021, pp. 256–274. Springer International Publishing, Cham (2021) Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of cards using private operations. In: Theoretical Aspects of Computing—ICTAC 2021, pp. 256–274. Springer International Publishing, Cham (2021)
12.
Zurück zum Zitat Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players using private operations. New Gen. Comput. 40(1), 67–93 (2022)CrossRef Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players using private operations. New Gen. Comput. 40(1), 67–93 (2022)CrossRef
14.
Zurück zum Zitat Mizuki, T.: A note on secure computations with commercially available playing cards. IEICE Technical Report 114(470), 179–186 (2015) Mizuki, T.: A note on secure computations with commercially available playing cards. IEICE Technical Report 114(470), 179–186 (2015)
15.
Zurück zum Zitat Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards. In: Cryptology and Network Security—15th International Conference, CANS, Proceedings, pp. 484–499 (2016) Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards. In: Cryptology and Network Security—15th International Conference, CANS, Proceedings, pp. 484–499 (2016)
16.
Zurück zum Zitat Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Advances in Cryptology—ASIACRYPT 2012—18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2–6, 2012. Proceedings, pp. 598–606 (2012) Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Advances in Cryptology—ASIACRYPT 2012—18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2–6, 2012. Proceedings, pp. 598–606 (2012)
17.
Zurück zum Zitat Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Sec. 13(1), 15–23 (2014)CrossRef Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Sec. 13(1), 15–23 (2014)CrossRef
18.
Zurück zum Zitat Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Frontiers in Algorithmics, Third International Workshop, FAW 2009, Hefei, China, June 20–23, 2009. Proceedings, pp. 358–369 (2009) Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Frontiers in Algorithmics, Third International Workshop, FAW 2009, Hefei, China, June 20–23, 2009. Proceedings, pp. 358–369 (2009)
19.
Zurück zum Zitat Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australas. J. Combin. 36, 279–293 (2006)MathSciNet Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australas. J. Combin. 36, 279–293 (2006)MathSciNet
20.
Zurück zum Zitat Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve millionaires’ problem with two kinds of cards. New Gen. Comput. 39, 73–96 (2021)CrossRef Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve millionaires’ problem with two kinds of cards. New Gen. Comput. 39, 73–96 (2021)CrossRef
21.
Zurück zum Zitat Nakai, T., Shirouchi, S., Tokushige, Y., Iwamoto, M., Ohta, K.: Secure computation for threshold functions with physical cards: power of private permutations. New Gen. Comput. 40(1), 95–113 (2022)CrossRef Nakai, T., Shirouchi, S., Tokushige, Y., Iwamoto, M., Ohta, K.: Secure computation for threshold functions with physical cards: power of private permutations. New Gen. Comput. 40(1), 95–113 (2022)CrossRef
22.
Zurück zum Zitat Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Cryptology and Network Security—15th International Conference, CANS, 2016, Proceedings, pp. 500–517 (2016) Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Cryptology and Network Security—15th International Conference, CANS, 2016, Proceedings, pp. 500–517 (2016)
23.
Zurück zum Zitat Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1–2), 173–183 (1998)MathSciNetCrossRef Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1–2), 173–183 (1998)MathSciNetCrossRef
24.
Zurück zum Zitat Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inf. 38, 181–188 (1999) Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inf. 38, 181–188 (1999)
25.
Zurück zum Zitat Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: 2018 13th Asia Joint Conference on Information Security (AsiaJCIS), pp. 23–28 (2018) Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: 2018 13th Asia Joint Conference on Information Security (AsiaJCIS), pp. 23–28 (2018)
26.
Zurück zum Zitat Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using private operations. Cryptography 5(3) (2021) Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using private operations. Cryptography 5(3) (2021)
27.
Zurück zum Zitat Shimizu, Y., Kishi, Y., Sasaki, T., Fujioka, A.: Card-based cryptographic protocols with private operations which can prevent malicious behaviors. In: IEICE Techinical Report ISEC2017-113, pp. 129–135 (2018) (in Japanese) Shimizu, Y., Kishi, Y., Sasaki, T., Fujioka, A.: Card-based cryptographic protocols with private operations which can prevent malicious behaviors. In: IEICE Techinical Report ISEC2017-113, pp. 129–135 (2018) (in Japanese)
29.
Zurück zum Zitat Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, FOCS ’86, pp. 162–167. IEEE Computer Society (1986) Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, FOCS ’86, pp. 162–167. IEEE Computer Society (1986)
Metadaten
Titel
Card-based Cryptography with a Standard Deck of Cards, Revisited: Efficient Protocols in the Private Model
verfasst von
Takeshi Nakai
Keita Iwanari
Tomoki Ono
Yoshiki Abe
Yohei Watanabe
Mitsugu Iwamoto
Publikationsdatum
21.06.2024
Verlag
Springer Japan
Erschienen in
New Generation Computing / Ausgabe 3/2024
Print ISSN: 0288-3635
Elektronische ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-024-00269-y