Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Case Study: Hydroxyapatite–Titanium Bulk Composites for Bone Tissue Engineering Applications

verfasst von : Bikramjit Basu, Sourabh Ghosh

Erschienen in: Biomaterials for Musculoskeletal Regeneration

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The research on bulk hydroxyapatite (HA)-based composites is driven by the need to develop biomaterials with better mechanical properties without compromising biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of the present chapter is limited to discuss the processing and the mechanical as well as biocompatibility properties in the context of bone tissue engineering applications of a model system i.e. HA–Ti. It will be discussed as how hydroxyapatite-titanium (HA–Ti) based bulk composites can be processed to have better fracture toughness and strength together with uncompromised biocompatibility. On the materials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing technique like, spark plasma sintering can be adopted as an advanced processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms are discussed with an emphasis to synergize multiple toughening mechanisms, which requires careful tailoring of microstructure. The in vitro cytocompatibilty, as well as in vivo biocompatibility results are also reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Begley CT, Doherty MJ, Mollan RAB, Wilson JD. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes. Biomaterials. 1995;16:1181–5.CrossRef Begley CT, Doherty MJ, Mollan RAB, Wilson JD. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes. Biomaterials. 1995;16:1181–5.CrossRef
2.
Zurück zum Zitat Silva RV, Camilli JA, Bertran CA, Moreira NH. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg. 2004;10:1–7. Silva RV, Camilli JA, Bertran CA, Moreira NH. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg. 2004;10:1–7.
3.
Zurück zum Zitat Whang PG, Wang JC. Bone graft substitutes for spinal fusion. Spine J. 2003;3:155–65.CrossRef Whang PG, Wang JC. Bone graft substitutes for spinal fusion. Spine J. 2003;3:155–65.CrossRef
4.
Zurück zum Zitat Khan SN, Fraser JF, Sandhu HS, Cammisa FP, Girardi FP, Lane JM. Use of osteopromotive growth factors, demineralized bone matrix and ceramics to enhance spinal fusion. J Am Acad Orthop Surg. 2005;13:129–37.CrossRef Khan SN, Fraser JF, Sandhu HS, Cammisa FP, Girardi FP, Lane JM. Use of osteopromotive growth factors, demineralized bone matrix and ceramics to enhance spinal fusion. J Am Acad Orthop Surg. 2005;13:129–37.CrossRef
5.
Zurück zum Zitat Summers BN, Eisenstein SM. Donor site pain from the ilium: a complication of lumbar spine fusion. J Bone Joint Sur Br. 1989;71-B:677–680. Summers BN, Eisenstein SM. Donor site pain from the ilium: a complication of lumbar spine fusion. J Bone Joint Sur Br. 1989;71-B:677–680.
6.
Zurück zum Zitat Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Inj Int J Care Inj. 2005;365:S20–7.CrossRef Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Inj Int J Care Inj. 2005;365:S20–7.CrossRef
7.
Zurück zum Zitat Grauer JN, Beiber JM, Kwon B, Vaccaro AR. The evolution of allograft bone for spinal applications. Orthopedics. 2005;28:573–7. Grauer JN, Beiber JM, Kwon B, Vaccaro AR. The evolution of allograft bone for spinal applications. Orthopedics. 2005;28:573–7.
8.
Zurück zum Zitat Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002;25:571-278. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002;25:571-278.
9.
Zurück zum Zitat Bonfiglio M, Jeter WS. Immunological responses to bone. Clin Orthop. 1972;18:19–27. Bonfiglio M, Jeter WS. Immunological responses to bone. Clin Orthop. 1972;18:19–27.
10.
Zurück zum Zitat GD GDB, Goldberg VM, Zika JM. Immune responses of rats to frozen bone allografts. J Bone Joint Sur, Am. 1983;65-A:239–246. GD GDB, Goldberg VM, Zika JM. Immune responses of rats to frozen bone allografts. J Bone Joint Sur, Am. 1983;65-A:239–246.
11.
Zurück zum Zitat Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991;2:187–208.CrossRef Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991;2:187–208.CrossRef
12.
Zurück zum Zitat Pelker RR, Friedlaender GE. Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am. 1987;18:235–9. Pelker RR, Friedlaender GE. Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am. 1987;18:235–9.
13.
Zurück zum Zitat Goldberg VM, Stevenson S, Shaffer JW. Biology of autografts and allografts. Park Ridge, Illinois: The American Academy of Orthopaedic Surgeons; 1991. Goldberg VM, Stevenson S, Shaffer JW. Biology of autografts and allografts. Park Ridge, Illinois: The American Academy of Orthopaedic Surgeons; 1991.
14.
Zurück zum Zitat Wiles P. The surgery of the osteo-arthritic hip. Br j Sur. 1958;45(193):488–97.CrossRef Wiles P. The surgery of the osteo-arthritic hip. Br j Sur. 1958;45(193):488–97.CrossRef
15.
Zurück zum Zitat Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.CrossRef Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.CrossRef
16.
Zurück zum Zitat Basu B, Katti DS, Kumar A. Advanced biomaterials: fundamentals, processing and applications. New Jersey, USA: John Wiley & Sons, Inc.; 2009.CrossRef Basu B, Katti DS, Kumar A. Advanced biomaterials: fundamentals, processing and applications. New Jersey, USA: John Wiley & Sons, Inc.; 2009.CrossRef
17.
Zurück zum Zitat Valiathan M, Krishnan V. Biomaterials: an overview. Natl Med J India. 1999;12:270–344. Valiathan M, Krishnan V. Biomaterials: an overview. Natl Med J India. 1999;12:270–344.
18.
Zurück zum Zitat LeGeros RZ, Daculsi G, LeGeros JP. Bioactive bioceramics. Totowa, NJ: Humana Press; 2008.CrossRef LeGeros RZ, Daculsi G, LeGeros JP. Bioactive bioceramics. Totowa, NJ: Humana Press; 2008.CrossRef
19.
Zurück zum Zitat Hench LL, Paschall HA. Direct bonding of bioactive glass ceramics to bone and muscle. J Biomed Mater Res. 1973;4:25–42.CrossRef Hench LL, Paschall HA. Direct bonding of bioactive glass ceramics to bone and muscle. J Biomed Mater Res. 1973;4:25–42.CrossRef
20.
Zurück zum Zitat Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.CrossRef Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.CrossRef
21.
Zurück zum Zitat Osborn JF, Newesely H. The material science of calcium phosphate ceramics. Biomaterials. 1980;1:108–11.CrossRef Osborn JF, Newesely H. The material science of calcium phosphate ceramics. Biomaterials. 1980;1:108–11.CrossRef
22.
Zurück zum Zitat Legeros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Miner Res. 1993;8(S2):S583–96.CrossRef Legeros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Miner Res. 1993;8(S2):S583–96.CrossRef
23.
Zurück zum Zitat LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphate. Clin Orthop Relat Res. 2002;395:81–98.CrossRef LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphate. Clin Orthop Relat Res. 2002;395:81–98.CrossRef
24.
Zurück zum Zitat Oonishi H, Hench LL, Wilson J, Sugihara F. Quantitaive comparision of bone growth behaviour in granules of BioglassR, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res. 2000;51:37–46.CrossRef Oonishi H, Hench LL, Wilson J, Sugihara F. Quantitaive comparision of bone growth behaviour in granules of BioglassR, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res. 2000;51:37–46.CrossRef
25.
Zurück zum Zitat Urist MR, Silverman BF, Buring K, Dubuc FI, Rosenberg J. The bone induction principle. Clin Orthop. 1967;53:243–83.CrossRef Urist MR, Silverman BF, Buring K, Dubuc FI, Rosenberg J. The bone induction principle. Clin Orthop. 1967;53:243–83.CrossRef
26.
Zurück zum Zitat Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci. 2009;54:397–425.CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci. 2009;54:397–425.CrossRef
27.
Zurück zum Zitat Morais JM, Papadimitrakopoulos F, Burgerss DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. Am Assoc Pharaceutical Sci J. 2010;12:188–96. Morais JM, Papadimitrakopoulos F, Burgerss DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. Am Assoc Pharaceutical Sci J. 2010;12:188–96.
28.
Zurück zum Zitat Alliot-Licht B, Gregoire M, Orly I, Menanteau J. Cellular activity of osteoblasts in the presence of hydroxyapatite: an in vitro experiment. Biomaterials. 1991;12:752–6.CrossRef Alliot-Licht B, Gregoire M, Orly I, Menanteau J. Cellular activity of osteoblasts in the presence of hydroxyapatite: an in vitro experiment. Biomaterials. 1991;12:752–6.CrossRef
29.
Zurück zum Zitat Katti KS. Biomaterials in total joint replacement. Colloids Surf, B. 2004;39:133–42.CrossRef Katti KS. Biomaterials in total joint replacement. Colloids Surf, B. 2004;39:133–42.CrossRef
30.
Zurück zum Zitat Biring G, Bankes M, Meswania J, Blunn G. Friction, lubrication, wear and corrosion. Great Britain: Hodder Arnold; 2007. p. 304. Biring G, Bankes M, Meswania J, Blunn G. Friction, lubrication, wear and corrosion. Great Britain: Hodder Arnold; 2007. p. 304.
31.
Zurück zum Zitat Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinical cases in mineral and bone. Metabolism. 2013;10:34–40. Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinical cases in mineral and bone. Metabolism. 2013;10:34–40.
32.
Zurück zum Zitat Kienapfel H, Sprey C, Wilke A, Griss R. Implant fixation by bone ingrowth. J Arthroplasty. 1999;14:355–68.CrossRef Kienapfel H, Sprey C, Wilke A, Griss R. Implant fixation by bone ingrowth. J Arthroplasty. 1999;14:355–68.CrossRef
33.
Zurück zum Zitat Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33A:477–86.CrossRef Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33A:477–86.CrossRef
34.
Zurück zum Zitat Saenz A, Brostow W, Rivera E, Castaño V. Ceramic biomaterials: an introductory overview. J Mater Educ. 1999;21:297–306. Saenz A, Brostow W, Rivera E, Castaño V. Ceramic biomaterials: an introductory overview. J Mater Educ. 1999;21:297–306.
35.
Zurück zum Zitat Rivera-Muñoz E, Díaz J, Rodríguez JR, Brostow W, Castaño V. Hydroxyapatite spheres with controlled porosity for eye ball prosthesis: processing and characterization. J Mater Sci Mater Med. 2001;12:305–16.CrossRef Rivera-Muñoz E, Díaz J, Rodríguez JR, Brostow W, Castaño V. Hydroxyapatite spheres with controlled porosity for eye ball prosthesis: processing and characterization. J Mater Sci Mater Med. 2001;12:305–16.CrossRef
36.
Zurück zum Zitat Park J. Bioceramics: properties, characterizations, and applications. New York: Springer; 2008. p. 359. Park J. Bioceramics: properties, characterizations, and applications. New York: Springer; 2008. p. 359.
37.
Zurück zum Zitat Wolff J. The law of bone remodelling, Translated by P.Maquet and R. Furlong. Heidelberg: Springer; 1986. Wolff J. The law of bone remodelling, Translated by P.Maquet and R. Furlong. Heidelberg: Springer; 1986.
38.
Zurück zum Zitat Prendergast PJ, Huiskes R. The biomechanics of Wolff’s law: recent advances. Ir J Med Sci. 1995;164:152–4.CrossRef Prendergast PJ, Huiskes R. The biomechanics of Wolff’s law: recent advances. Ir J Med Sci. 1995;164:152–4.CrossRef
39.
Zurück zum Zitat Dujovne AR, Bobyn JD, Krygier JJ, Miller JE, Brooks CE. Mechanical compatibility of noncemented hip prostheses with the human femur. J Arthroplast. 1993;8:7–22.CrossRef Dujovne AR, Bobyn JD, Krygier JJ, Miller JE, Brooks CE. Mechanical compatibility of noncemented hip prostheses with the human femur. J Arthroplast. 1993;8:7–22.CrossRef
40.
Zurück zum Zitat Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop Relat Res. 1988;231:7–28. Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop Relat Res. 1988;231:7–28.
41.
Zurück zum Zitat Dowson D. Bio-tribology of natural and replacement synovial joints. New York: Springer; 1992. Dowson D. Bio-tribology of natural and replacement synovial joints. New York: Springer; 1992.
42.
Zurück zum Zitat Murugan R, Ramakrishna S. Nanostructured biomaterials. California: American Scientific Publishers; 2004. Murugan R, Ramakrishna S. Nanostructured biomaterials. California: American Scientific Publishers; 2004.
43.
44.
Zurück zum Zitat Audekercke RV, Martens M, Hastings GW. Mechanical properties of cancellous bone. Florida: CRC Press-Boca Raton; 1984. Audekercke RV, Martens M, Hastings GW. Mechanical properties of cancellous bone. Florida: CRC Press-Boca Raton; 1984.
45.
Zurück zum Zitat Black J. Orthopedic biomaterials in research and practice. NewYork: Churchill Livingston; 1988. Black J. Orthopedic biomaterials in research and practice. NewYork: Churchill Livingston; 1988.
46.
Zurück zum Zitat Jee WSS. Histology, cell and tissue biology. New York: Elsevier Science Inc.; 1983. Jee WSS. Histology, cell and tissue biology. New York: Elsevier Science Inc.; 1983.
47.
Zurück zum Zitat Evans FG, King A. Biomedical studies of the musculoskeletal system. Illinois: Springfield; 1961. Evans FG, King A. Biomedical studies of the musculoskeletal system. Illinois: Springfield; 1961.
48.
Zurück zum Zitat Bonfield W, Hastings GW. Elasticity and viscoelasticity of cortical bone. Florida: CRC Press-Boca Raton; 1984. Bonfield W, Hastings GW. Elasticity and viscoelasticity of cortical bone. Florida: CRC Press-Boca Raton; 1984.
49.
Zurück zum Zitat Kumar A, Webster TJ, Biswas K, Basu B. Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered Hydroxyapatite-Titanium biocomposites. J Biomed Mater Res, Part A. 2013;101:2925–38.CrossRef Kumar A, Webster TJ, Biswas K, Basu B. Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered Hydroxyapatite-Titanium biocomposites. J Biomed Mater Res, Part A. 2013;101:2925–38.CrossRef
50.
Zurück zum Zitat Kumar A, Dhara S, Biswas K, Basu B. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA–Ti composites. J Biomed Mate Res Part B-Appl Biomater. 2013;101B:223–36.CrossRef Kumar A, Dhara S, Biswas K, Basu B. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA–Ti composites. J Biomed Mate Res Part B-Appl Biomater. 2013;101B:223–36.CrossRef
51.
Zurück zum Zitat Chu C, Xue X, Zhu J, Yin Z. In vivo study on biocompatibility and bonding strength of Ti/Ti-20 vol.% HA/Ti-40 vol.% HA functionally graded biomaterial with bone tissue in the rabbit. Mater Sci Eng, A. 2006;429:18–24.CrossRef Chu C, Xue X, Zhu J, Yin Z. In vivo study on biocompatibility and bonding strength of Ti/Ti-20 vol.% HA/Ti-40 vol.% HA functionally graded biomaterial with bone tissue in the rabbit. Mater Sci Eng, A. 2006;429:18–24.CrossRef
52.
Zurück zum Zitat Nath S, Tripathi R, Basu B. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate–titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater Sci Eng, C. 2009;29:97–107.CrossRef Nath S, Tripathi R, Basu B. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate–titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater Sci Eng, C. 2009;29:97–107.CrossRef
53.
Zurück zum Zitat Nakahira A, Eguchi K. Evaluation of microstructure and some properties of hydroxyapatite/Ti composites. J Ceram Process Res. 2001;2:108–12. Nakahira A, Eguchi K. Evaluation of microstructure and some properties of hydroxyapatite/Ti composites. J Ceram Process Res. 2001;2:108–12.
54.
Zurück zum Zitat Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powder metallurgy method. Biomaterials. 2002;23:2909–15.CrossRef Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powder metallurgy method. Biomaterials. 2002;23:2909–15.CrossRef
55.
Zurück zum Zitat Yang Y, Kim K-H, Agrawal CM, Ong JL. Interaction of hydroxyapatite–titanium at elevated temperature in vacuum environment. Biomaterials. 2004;25:2927–32.CrossRef Yang Y, Kim K-H, Agrawal CM, Ong JL. Interaction of hydroxyapatite–titanium at elevated temperature in vacuum environment. Biomaterials. 2004;25:2927–32.CrossRef
56.
Zurück zum Zitat Dubey AK, A AE, Balani K, Basu B. Multifunctional properties of multi-stage spark plasma sintered HA-BaTiO3 based piezobiocomposites for bone replacement applications. J Am Ceram Soc. 2013. Dubey AK, A AE, Balani K, Basu B. Multifunctional properties of multi-stage spark plasma sintered HA-BaTiO3 based piezobiocomposites for bone replacement applications. J Am Ceram Soc. 2013.
57.
Zurück zum Zitat Mallik PK, Basu B. Better early osteogenesis of electroconductive hydroxyapatite–calcium titanate composites in a rabbit animal model. J Biomed Mater Res Part A. 2013:n/a-n/a. Mallik PK, Basu B. Better early osteogenesis of electroconductive hydroxyapatite–calcium titanate composites in a rabbit animal model. J Biomed Mater Res Part A. 2013:n/a-n/a.
58.
Zurück zum Zitat Bajpai I, Balani K, Basu B. Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J Am Ceram Soc. 2013;96(7):2100–8.CrossRef Bajpai I, Balani K, Basu B. Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J Am Ceram Soc. 2013;96(7):2100–8.CrossRef
59.
Zurück zum Zitat Saha N, Dubey AK, Basu B. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites. J Biomed Mater Res B Appl Biomater. 2012;100B(1):256–64.CrossRef Saha N, Dubey AK, Basu B. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites. J Biomed Mater Res B Appl Biomater. 2012;100B(1):256–64.CrossRef
60.
Zurück zum Zitat Mandal S, Sunilkumar B, Kumar A, Basu B. Hot pressed silver doped hydroxyapatite biomaterials with bactericidal properties against magnetotactic bacteria. Mater Technol Adv Perform Mater. 2013. Mandal S, Sunilkumar B, Kumar A, Basu B. Hot pressed silver doped hydroxyapatite biomaterials with bactericidal properties against magnetotactic bacteria. Mater Technol Adv Perform Mater. 2013.
61.
Zurück zum Zitat Kong Y-M, Kim S, Kim H-E. Reinforcement of hydroxyapatite bioceramic by addition of ZrO2 Coated with Al2O3. J Am Ceram Soc. 1999;82:2963.CrossRef Kong Y-M, Kim S, Kim H-E. Reinforcement of hydroxyapatite bioceramic by addition of ZrO2 Coated with Al2O3. J Am Ceram Soc. 1999;82:2963.CrossRef
62.
Zurück zum Zitat Rapacz-Kmita A, Sl´osarczyk A, Paszkiewicz Z. Mechanical properties of HAp–ZrO2 composites. J Eur Ceram Soc. 2006;26:1481–8.CrossRef Rapacz-Kmita A, Sl´osarczyk A, Paszkiewicz Z. Mechanical properties of HAp–ZrO2 composites. J Eur Ceram Soc. 2006;26:1481–8.CrossRef
63.
Zurück zum Zitat Chun Y, Ying-kui G, Mi-lin Z. Thermal decomposition and mechanical properties of hydroxyapatite ceramic. Trans Nonferrous Met Soc China. 2010;20:254–8.CrossRef Chun Y, Ying-kui G, Mi-lin Z. Thermal decomposition and mechanical properties of hydroxyapatite ceramic. Trans Nonferrous Met Soc China. 2010;20:254–8.CrossRef
64.
Zurück zum Zitat Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective: Review. Biomaterials. 1998;19:1621–39.CrossRef Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective: Review. Biomaterials. 1998;19:1621–39.CrossRef
65.
Zurück zum Zitat Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol. 2005;65:2385–406.CrossRef Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol. 2005;65:2385–406.CrossRef
66.
Zurück zum Zitat Kwon S-H, Jun Y-K, Hong S-H, Kim H-E. Synthesis and dissolution behavior of Beta-TCP and HA/Beta-TCP composite powders. J Eur Ceram Soc. 2003;23:1039–45.CrossRef Kwon S-H, Jun Y-K, Hong S-H, Kim H-E. Synthesis and dissolution behavior of Beta-TCP and HA/Beta-TCP composite powders. J Eur Ceram Soc. 2003;23:1039–45.CrossRef
67.
Zurück zum Zitat Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013;61(14):5198–215.CrossRef Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013;61(14):5198–215.CrossRef
68.
Zurück zum Zitat Reddy KM, Kumar N, Basu B. Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. Scripta Materilia. 2010;62:435–8.CrossRef Reddy KM, Kumar N, Basu B. Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. Scripta Materilia. 2010;62:435–8.CrossRef
69.
Zurück zum Zitat Fahami A, Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B. Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci. 2011;13:135–41.CrossRef Fahami A, Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B. Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci. 2011;13:135–41.CrossRef
70.
Zurück zum Zitat Sanosh KP, Chu M-C, Balakrishnan A, Lee Y-J, Kim TN, Cho S-J. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys. 2009;9(6):1459–62.CrossRef Sanosh KP, Chu M-C, Balakrishnan A, Lee Y-J, Kim TN, Cho S-J. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys. 2009;9(6):1459–62.CrossRef
71.
Zurück zum Zitat Chu C, Lin P, Dong Y, Xue X, Zhu J, Yin Z. Fabrication and characterization of hydroxyapatite reinforced with 20 vol%Ti particles for use as hard tissue replacement. J Mater Sci Mater Med. 2002;13:985–92.CrossRef Chu C, Lin P, Dong Y, Xue X, Zhu J, Yin Z. Fabrication and characterization of hydroxyapatite reinforced with 20 vol%Ti particles for use as hard tissue replacement. J Mater Sci Mater Med. 2002;13:985–92.CrossRef
72.
Zurück zum Zitat Babushkin O, Lindbäck T, Holmgren A, Li J, Hermansson L. Thermal expansion of hot isostatically pressed hydroxyapatite. J Mater Chem. 1994;4:413–5.CrossRef Babushkin O, Lindbäck T, Holmgren A, Li J, Hermansson L. Thermal expansion of hot isostatically pressed hydroxyapatite. J Mater Chem. 1994;4:413–5.CrossRef
73.
Zurück zum Zitat Lütjering G, Williams JC. Titanium. New York: Springer; 2007. p. 442. Lütjering G, Williams JC. Titanium. New York: Springer; 2007. p. 442.
74.
Zurück zum Zitat Weng J, Liu X, Zhang X, Ji X. Thermal decomposition of hydroxyapatite structure induced by titanium and its oxides. J Mater Sci Lett. 1994;13:159–61.CrossRef Weng J, Liu X, Zhang X, Ji X. Thermal decomposition of hydroxyapatite structure induced by titanium and its oxides. J Mater Sci Lett. 1994;13:159–61.CrossRef
75.
Zurück zum Zitat Groot Kd. Bioceramics of calcium phosphate. Boca Raton, Florida: CRC Press; 1983. Groot Kd. Bioceramics of calcium phosphate. Boca Raton, Florida: CRC Press; 1983.
76.
Zurück zum Zitat Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powder by powder metallurgy method. Biomaterials. 2002;23:2909–15.CrossRef Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powder by powder metallurgy method. Biomaterials. 2002;23:2909–15.CrossRef
77.
Zurück zum Zitat Mondal D, Nguyen L, Oh I-H, Lee B-T. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering. J Biomed Mater Res, Part A. 2013;101A(5):1489–501.CrossRef Mondal D, Nguyen L, Oh I-H, Lee B-T. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering. J Biomed Mater Res, Part A. 2013;101A(5):1489–501.CrossRef
78.
Zurück zum Zitat Beegan D, Chowdhury S, Laugier MT. Work of indentation methods for determining copper film hardness. Surf Coat Technol. 2005;192:57–63.CrossRef Beegan D, Chowdhury S, Laugier MT. Work of indentation methods for determining copper film hardness. Surf Coat Technol. 2005;192:57–63.CrossRef
79.
Zurück zum Zitat Kumar A, Dhara S, Biswas K, Basu B. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA–Ti composites. J Biomed Mater Res: Part B-Appl Biomater. 2012. Kumar A, Dhara S, Biswas K, Basu B. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA–Ti composites. J Biomed Mater Res: Part B-Appl Biomater. 2012.
80.
Zurück zum Zitat Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22(1):57–66.CrossRef Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22(1):57–66.CrossRef
81.
Zurück zum Zitat Basu B, Balani K. Advanced structural ceramics. New Jersey, USA: John Wiley & Sons; 2011. p. 474.CrossRef Basu B, Balani K. Advanced structural ceramics. New Jersey, USA: John Wiley & Sons; 2011. p. 474.CrossRef
82.
Zurück zum Zitat Lawn B. Fracture of brittle solids. Cambridge, UK: Cambridge University Press; 1998. p. 378. Lawn B. Fracture of brittle solids. Cambridge, UK: Cambridge University Press; 1998. p. 378.
83.
Zurück zum Zitat Gang B, Chung-Yuen H. Effects of interface debonding on the toughness of ductile-particle reinforced ceramics. Int J Solids Struct. 1990;26(5–6):631–42.CrossRef Gang B, Chung-Yuen H. Effects of interface debonding on the toughness of ductile-particle reinforced ceramics. Int J Solids Struct. 1990;26(5–6):631–42.CrossRef
84.
Zurück zum Zitat Kaw AK. Machanics of composite materials. Boca Raton, Florida, USA: CRC Press; 2006. p. 466. Kaw AK. Machanics of composite materials. Boca Raton, Florida, USA: CRC Press; 2006. p. 466.
85.
Zurück zum Zitat Weertman J. Dislocation based fracture mechanics. Singapore: World Sci; 1996.CrossRef Weertman J. Dislocation based fracture mechanics. Singapore: World Sci; 1996.CrossRef
86.
Zurück zum Zitat Swanson PL. Crack-interface traction: a fracture-resistance mechanism in brittle polycrystals. Westerville, OH: American Ceramic Society; 1988. Swanson PL. Crack-interface traction: a fracture-resistance mechanism in brittle polycrystals. Westerville, OH: American Ceramic Society; 1988.
87.
Zurück zum Zitat Faber KT, Evans AG. Crack deflection processes—I. Theory. Acta Metall. 1983;31(4):565–76.CrossRef Faber KT, Evans AG. Crack deflection processes—I. Theory. Acta Metall. 1983;31(4):565–76.CrossRef
88.
Zurück zum Zitat Faber KT, Evans AG. Crack deflection processes—II. Experiment. Acta Metall. 1983;31(4):577–84.CrossRef Faber KT, Evans AG. Crack deflection processes—II. Experiment. Acta Metall. 1983;31(4):577–84.CrossRef
89.
Zurück zum Zitat Kumar A. Microstructure development, biomineralization and osteoblast cell fate processes on high toughness hydroxyapatite-titanium composites. Kanpur, India: Indian Inst Technol Kanpur; 2013. p. 204. Kumar A. Microstructure development, biomineralization and osteoblast cell fate processes on high toughness hydroxyapatite-titanium composites. Kanpur, India: Indian Inst Technol Kanpur; 2013. p. 204.
90.
Zurück zum Zitat Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences; 2013. Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences; 2013.
91.
Zurück zum Zitat Billi F, Campbell P. Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. J Appl Biomater Biomech. 2010;8(1):1–6. Billi F, Campbell P. Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. J Appl Biomater Biomech. 2010;8(1):1–6.
92.
Zurück zum Zitat Ashby MF, Blunt FJ, Bannister M. Flow characteristics of highly constrained metal wires. Acta Metall. 1989;37(7):1847–57.CrossRef Ashby MF, Blunt FJ, Bannister M. Flow characteristics of highly constrained metal wires. Acta Metall. 1989;37(7):1847–57.CrossRef
93.
Zurück zum Zitat Evans AG, McMeeking RM. On the toughening of ceramics by strong reinforcements. Acta Metall. 1986;34:2435.CrossRef Evans AG, McMeeking RM. On the toughening of ceramics by strong reinforcements. Acta Metall. 1986;34:2435.CrossRef
94.
Zurück zum Zitat Shou-Zhu Z, Chi-Wei L. Fractal dimension and fracture toughness. J Phys D Appl Phys. 1989;22(6):790.CrossRef Shou-Zhu Z, Chi-Wei L. Fractal dimension and fracture toughness. J Phys D Appl Phys. 1989;22(6):790.CrossRef
95.
Zurück zum Zitat Mandelbrot BB, Passoja DE, Paullay AJ. Fractal character of fracture surfaces of metals. Nature. 1984;308:721–2.CrossRef Mandelbrot BB, Passoja DE, Paullay AJ. Fractal character of fracture surfaces of metals. Nature. 1984;308:721–2.CrossRef
96.
Zurück zum Zitat Xu L, Xie Z, Gao L, Wang X, Lian F, Liu T, Li W. Synthesis, evaluation and characterization of alumina ceramics with elongated grains. Ceram Int. 2005;31(7):953–8.CrossRef Xu L, Xie Z, Gao L, Wang X, Lian F, Liu T, Li W. Synthesis, evaluation and characterization of alumina ceramics with elongated grains. Ceram Int. 2005;31(7):953–8.CrossRef
97.
Zurück zum Zitat Charkaluk E, Bigerelle M, Iost A. Fractals and fracture. Eng Fract Mech. 1998;61(1):119–39.CrossRef Charkaluk E, Bigerelle M, Iost A. Fractals and fracture. Eng Fract Mech. 1998;61(1):119–39.CrossRef
98.
Zurück zum Zitat Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech Mater. 1994;18(2):89–101.CrossRef Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech Mater. 1994;18(2):89–101.CrossRef
99.
Zurück zum Zitat Rishabh A, Joshi MR, Balani K. Fractal model for estimating fracture toughness of carbon nanotube reinforced aluminum oxide. J Appl Phys. 2010;107:7.CrossRef Rishabh A, Joshi MR, Balani K. Fractal model for estimating fracture toughness of carbon nanotube reinforced aluminum oxide. J Appl Phys. 2010;107:7.CrossRef
100.
Zurück zum Zitat Zhang X, Gubbels GHM, Terpstra RA, Metselaar R. Toughening of calcium hydroxyapatite with silver particles. J Mater Sci. 1997;32(1):235–43.CrossRef Zhang X, Gubbels GHM, Terpstra RA, Metselaar R. Toughening of calcium hydroxyapatite with silver particles. J Mater Sci. 1997;32(1):235–43.CrossRef
101.
Zurück zum Zitat Tancred DC, McCormack BAO, Carr AJ. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites. Biomaterials. 1998;19:1735–43.CrossRef Tancred DC, McCormack BAO, Carr AJ. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites. Biomaterials. 1998;19:1735–43.CrossRef
102.
Zurück zum Zitat Suchanek W, Yashima M, Kakihana M, Yoshimura M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J Am Ceram Soc. 1997;80:2805–13.CrossRef Suchanek W, Yashima M, Kakihana M, Yoshimura M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J Am Ceram Soc. 1997;80:2805–13.CrossRef
103.
Zurück zum Zitat Chaudhry AA, Yan H, Gong K, Inam F, Viola G, Reece MJ, Goodall JBM, ur Rehman I, McNeil-Watson FK, Corbett JCW and others. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater. 2011;7(2):791–799. Chaudhry AA, Yan H, Gong K, Inam F, Viola G, Reece MJ, Goodall JBM, ur Rehman I, McNeil-Watson FK, Corbett JCW and others. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater. 2011;7(2):791–799.
104.
Zurück zum Zitat Warren R. Fundamental aspects of the properties of ceramic-matrix composites. London, UK: Blakie and Sons Ltd.; 1992. Warren R. Fundamental aspects of the properties of ceramic-matrix composites. London, UK: Blakie and Sons Ltd.; 1992.
105.
Zurück zum Zitat Becher PF, Lin HT, Hwang SL, Hoffmann MJ, Chen I-W. The Influence of microstructure on the mechanical behavior of silicon nitride ceramics. In: MRS online proceedings library 1992;287:null-null. Becher PF, Lin HT, Hwang SL, Hoffmann MJ, Chen I-W. The Influence of microstructure on the mechanical behavior of silicon nitride ceramics. In: MRS online proceedings library 1992;287:null-null.
106.
Zurück zum Zitat Wei M, Ruys AJ, Swain MV, Kim SH, Milthorpe BK, Sorrell CC. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci Mater Med. 1999;10(7):401–9.CrossRef Wei M, Ruys AJ, Swain MV, Kim SH, Milthorpe BK, Sorrell CC. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci Mater Med. 1999;10(7):401–9.CrossRef
107.
Zurück zum Zitat Prokopiev O, Sevostianov I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater Sci Eng, A. 2006;431:218–27.CrossRef Prokopiev O, Sevostianov I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater Sci Eng, A. 2006;431:218–27.CrossRef
108.
Zurück zum Zitat Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng, A. 1998;243:231–6.CrossRef Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng, A. 1998;243:231–6.CrossRef
109.
Zurück zum Zitat Zadra M, Casari F, Girardini L, Molinari A. Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 2008;51:59–65.CrossRef Zadra M, Casari F, Girardini L, Molinari A. Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 2008;51:59–65.CrossRef
110.
Zurück zum Zitat Ghaith ES, Hayakawa T, Kasuga T, Nogami M. Apatite formation on rutile type TiO2 films formed by laser irradiation. J Mater Sci. 2006;41(8):2521–4.CrossRef Ghaith ES, Hayakawa T, Kasuga T, Nogami M. Apatite formation on rutile type TiO2 films formed by laser irradiation. J Mater Sci. 2006;41(8):2521–4.CrossRef
111.
Zurück zum Zitat Kumar R, Prakash KH, Cheang P, Khor KA. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Mater. 2005;53:2327–35.CrossRef Kumar R, Prakash KH, Cheang P, Khor KA. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Mater. 2005;53:2327–35.CrossRef
112.
Zurück zum Zitat Ogiso M, Tabata T, Ichijo T, Borgese D. Examination of human bone surrounded by a dense hydroxyapatite dental implant after long-term use. J Long Term Eff Med Implant. 1992;2:235–47. Ogiso M, Tabata T, Ichijo T, Borgese D. Examination of human bone surrounded by a dense hydroxyapatite dental implant after long-term use. J Long Term Eff Med Implant. 1992;2:235–47.
113.
Zurück zum Zitat Denissen HW, Kalk W, Veldhuis AAH, van den Hooff A. Eleven-year study of hydroxyapatite implants. J Prosthet Dent. 1989;61(6):706–12.CrossRef Denissen HW, Kalk W, Veldhuis AAH, van den Hooff A. Eleven-year study of hydroxyapatite implants. J Prosthet Dent. 1989;61(6):706–12.CrossRef
114.
Zurück zum Zitat de Putter C, de Groot K, Smitt PAES. Transmucosal implants of dense hydroxylapatite. J Prosthet Dent. 1983;49(1):87–95.CrossRef de Putter C, de Groot K, Smitt PAES. Transmucosal implants of dense hydroxylapatite. J Prosthet Dent. 1983;49(1):87–95.CrossRef
115.
Zurück zum Zitat Kumar A, Dhara S, Biswas K, Basu B. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA–Ti composites. J Biomed Mater Res B Appl Biomater. 2013;101B(2):223–36.CrossRef Kumar A, Dhara S, Biswas K, Basu B. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA–Ti composites. J Biomed Mater Res B Appl Biomater. 2013;101B(2):223–36.CrossRef
116.
Zurück zum Zitat Kumar A, Webster TJ, Biswas K, Basu B. Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered Hydroxyapatite–Titanium biocomposites. J Biomed Mater Res, Part A. 2013;. doi:10.1002/jbm.a.34603. Kumar A, Webster TJ, Biswas K, Basu B. Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered Hydroxyapatite–Titanium biocomposites. J Biomed Mater Res, Part A. 2013;. doi:10.​1002/​jbm.​a.​34603.
Metadaten
Titel
Case Study: Hydroxyapatite–Titanium Bulk Composites for Bone Tissue Engineering Applications
verfasst von
Bikramjit Basu
Sourabh Ghosh
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3017-8_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.