Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Case Study: Osseointegration of Strontium Containing Glass Ceramic

verfasst von : Bikramjit Basu, Sourabh Ghosh

Erschienen in: Biomaterials for Musculoskeletal Regeneration

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The most important property of bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. One of the desired properties for any new biomaterial composition is its long term stability in a suitable animal model and such property cannot be appropriately assessed by performing short term implantation studies. While hydroxyapatite or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long term release of metallic ions on bone regeneration have been a major concern. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO2–3Al2O3–1.5P2O5–3SrO–2SrF2 during short term implantation of up to 12 weeks in rabbit animal model followed by long term implantation for 26 weeks in cylindrical bone defects in rabbit model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass-ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Friedma S, Löst C. Malaekeh Zarrabian and Martin Trope; evaluation of success and failure after endodontic therapy using a glass ionomer cement sealer. J Endod. 1995;21:384–90.CrossRef Friedma S, Löst C. Malaekeh Zarrabian and Martin Trope; evaluation of success and failure after endodontic therapy using a glass ionomer cement sealer. J Endod. 1995;21:384–90.CrossRef
2.
Zurück zum Zitat Brook IM, Craig GT, Hatton PV, Jonck LM. Bone cell interactions with a granular glass-ionomer bone substitute material: in vivo and in vitro culture models. Biomaterials. 1992;13:721–5.CrossRef Brook IM, Craig GT, Hatton PV, Jonck LM. Bone cell interactions with a granular glass-ionomer bone substitute material: in vivo and in vitro culture models. Biomaterials. 1992;13:721–5.CrossRef
3.
Zurück zum Zitat Jonck LM, Grobbelaar CJ, Strating H. Biological evaluation of glass-ionomer cement (Ketac-0) as an interface material in total joint replacement. A screening test. Clin Mater. 1989;4:201–224. Jonck LM, Grobbelaar CJ, Strating H. Biological evaluation of glass-ionomer cement (Ketac-0) as an interface material in total joint replacement. A screening test. Clin Mater. 1989;4:201–224.
4.
Zurück zum Zitat Brook IM, Hatton PV. Glass-ionomers: bioactive implant materials. Biomaterials. 1998;19:565–71.CrossRef Brook IM, Hatton PV. Glass-ionomers: bioactive implant materials. Biomaterials. 1998;19:565–71.CrossRef
5.
Zurück zum Zitat Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.CrossRef Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.CrossRef
6.
Zurück zum Zitat Zhao Y, Guo D, Hou S, Zhong H, Yan J, Zhang C, Zhou Y. Porous allograft bone scaffolds: doping with strontium. PLoS ONE. 2013;8:e69339.CrossRef Zhao Y, Guo D, Hou S, Zhong H, Yan J, Zhang C, Zhou Y. Porous allograft bone scaffolds: doping with strontium. PLoS ONE. 2013;8:e69339.CrossRef
7.
Zurück zum Zitat Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater. 2011;21:130–43. Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater. 2011;21:130–43.
8.
Zurück zum Zitat Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C. Incorporation and distribution of strontium in bone. Bone. 2001;28(4):446–53.CrossRef Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C. Incorporation and distribution of strontium in bone. Bone. 2001;28(4):446–53.CrossRef
9.
Zurück zum Zitat Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sorensen S, Jeppesen CS, Kraft DC, Bottiger J, Rasse M et al. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 2013;34:5883–5890. Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sorensen S, Jeppesen CS, Kraft DC, Bottiger J, Rasse M et al. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 2013;34:5883–5890.
10.
Zurück zum Zitat Hill R, Calver A, Stamboulis A, Bubb N. Real-time nucleation and crystallization studies of a fluorapatite glass- ceramics using small-angle neutron scattering and neutron diffraction. J Am Ceram Soc. 2007;90:763–8.CrossRef Hill R, Calver A, Stamboulis A, Bubb N. Real-time nucleation and crystallization studies of a fluorapatite glass- ceramics using small-angle neutron scattering and neutron diffraction. J Am Ceram Soc. 2007;90:763–8.CrossRef
11.
Zurück zum Zitat Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The influence of strontium substitution in fluorapatite glasses and glass-ceramics. J Non-Cryst Sol. 2004;336:223–9.CrossRef Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The influence of strontium substitution in fluorapatite glasses and glass-ceramics. J Non-Cryst Sol. 2004;336:223–9.CrossRef
12.
Zurück zum Zitat Odonnell MD, Fredholm Y, Rouffignace A, Hill R. Structural analysis of a series of strontium- substituted apatites. Acta Biomater. 2008;4:1455–64.CrossRef Odonnell MD, Fredholm Y, Rouffignace A, Hill R. Structural analysis of a series of strontium- substituted apatites. Acta Biomater. 2008;4:1455–64.CrossRef
13.
Zurück zum Zitat Goel A, Rajagopal R, Ferreira JMF. Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2 -P2O5 -CaF2 glasses. ActaBiomaterialia. 2011;7:4071–80. Goel A, Rajagopal R, Ferreira JMF. Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2 -P2O5 -CaF2 glasses. ActaBiomaterialia. 2011;7:4071–80.
14.
Zurück zum Zitat Devi ND, Balu R, Sampath Kumar TS. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am CerSoc. 2012;95:2700–8. Devi ND, Balu R, Sampath Kumar TS. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am CerSoc. 2012;95:2700–8.
15.
Zurück zum Zitat Hill R, Stamboulis A, Law RV, Matusuya SA. MAS-NMR study of the crystallisation process of apatite–mullite glass-ceramics. J Phys Chem. 2004;45:127–133. Hill R, Stamboulis A, Law RV, Matusuya SA. MAS-NMR study of the crystallisation process of apatite–mullite glass-ceramics. J Phys Chem. 2004;45:127–133.
16.
Zurück zum Zitat Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The influence of strontium substitution in fluorapatite glasses and glass-ceramics. J Non-Cryst Solids. 2004;336(3):223–9.CrossRef Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The influence of strontium substitution in fluorapatite glasses and glass-ceramics. J Non-Cryst Solids. 2004;336(3):223–9.CrossRef
17.
Zurück zum Zitat Tripathi G, Gough JE, Dinda A, Basu B. In vitro cytotoxicity and in vivo osseointegration property of compression moulded HDPE-HA-Al2O3 hybrid biocomposites. J Biomed Mater Res A. 2013;101(6):1539–49.CrossRef Tripathi G, Gough JE, Dinda A, Basu B. In vitro cytotoxicity and in vivo osseointegration property of compression moulded HDPE-HA-Al2O3 hybrid biocomposites. J Biomed Mater Res A. 2013;101(6):1539–49.CrossRef
18.
Zurück zum Zitat Rafferty Aran, Clifford Anton, Hill Robert, Wood David. BisserkaSamuneva, Margarita Dimitrova-Lukacs. Influence of fluorine content in apatite mullite glass-ceramics. J Am Ceram Soc. 2000;83:2833–8.CrossRef Rafferty Aran, Clifford Anton, Hill Robert, Wood David. BisserkaSamuneva, Margarita Dimitrova-Lukacs. Influence of fluorine content in apatite mullite glass-ceramics. J Am Ceram Soc. 2000;83:2833–8.CrossRef
19.
Zurück zum Zitat Boyd D, Towler MR, Law RV, Hill RG. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. J Mater Sci: Mater Med. 2006;17:397–402. Boyd D, Towler MR, Law RV, Hill RG. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. J Mater Sci: Mater Med. 2006;17:397–402.
20.
Zurück zum Zitat Ravi ND, Balu R, Sampath Kumar TS. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am Ceram Soc. 2012;95(9):2700–8.CrossRef Ravi ND, Balu R, Sampath Kumar TS. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am Ceram Soc. 2012;95(9):2700–8.CrossRef
21.
Zurück zum Zitat Goel A, Rajagopal RR, Ferreira JM. Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater. 2011;7(11):4071–80.CrossRef Goel A, Rajagopal RR, Ferreira JM. Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater. 2011;7(11):4071–80.CrossRef
22.
Zurück zum Zitat Vestermark MT, Hauge EM, Soballe K, Bechtold JE, Jakobsen T, Baas J. Strontium doping of bone graft extender. Acta Orthop. 2011;82(5):614–21.CrossRef Vestermark MT, Hauge EM, Soballe K, Bechtold JE, Jakobsen T, Baas J. Strontium doping of bone graft extender. Acta Orthop. 2011;82(5):614–21.CrossRef
23.
Zurück zum Zitat Hamdy NA. Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology 2009;48:iv9–13. Hamdy NA. Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology 2009;48:iv9–13.
24.
Zurück zum Zitat Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31(14):3949–56.CrossRef Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31(14):3949–56.CrossRef
25.
Zurück zum Zitat Kenny SM, Buggy M. Bone cements and fillers: a review. J Mater Sci Mater Med. 2003;14:923–38.CrossRef Kenny SM, Buggy M. Bone cements and fillers: a review. J Mater Sci Mater Med. 2003;14:923–38.CrossRef
26.
Zurück zum Zitat Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14:3–9.CrossRef Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14:3–9.CrossRef
27.
Zurück zum Zitat Brentegani LG, Bombonato KF, LamanoCarvalho TL. Histological evaluation of the biocompatibility of glass-ionomer cement in rat alveolus. Biomaterials. 1997;18:137–40.CrossRef Brentegani LG, Bombonato KF, LamanoCarvalho TL. Histological evaluation of the biocompatibility of glass-ionomer cement in rat alveolus. Biomaterials. 1997;18:137–40.CrossRef
28.
Zurück zum Zitat Nair MB, Varma H, Shenoy SJ, John A. Treatment of goat femur segmental defects with silica-coated hydroxyapatite–one-year follow-up. Tissue Eng Part A. 2010;16:385–91.CrossRef Nair MB, Varma H, Shenoy SJ, John A. Treatment of goat femur segmental defects with silica-coated hydroxyapatite–one-year follow-up. Tissue Eng Part A. 2010;16:385–91.CrossRef
29.
Zurück zum Zitat Acharya NK, Mahajan CV, Kumar RJ, Varma HK, Menon VK. Can iliac crest reconstruction reduce donor site morbidity?: a study using degradable hydroxyapatite-bioactive glass ceramic composite. J Spinal Disord Tech. 2010;23(4):266–71.CrossRef Acharya NK, Mahajan CV, Kumar RJ, Varma HK, Menon VK. Can iliac crest reconstruction reduce donor site morbidity?: a study using degradable hydroxyapatite-bioactive glass ceramic composite. J Spinal Disord Tech. 2010;23(4):266–71.CrossRef
30.
Zurück zum Zitat Nair MB, Suresh Babu S, Varma HK, John A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 2008;4(1):173–81.CrossRef Nair MB, Suresh Babu S, Varma HK, John A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 2008;4(1):173–81.CrossRef
31.
Zurück zum Zitat Pautke C, Vogt S, Tischer T, Wexel G, Deppe H, Milz S, Schieker M, Kolk A. Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone. 2005;37:441–5.CrossRef Pautke C, Vogt S, Tischer T, Wexel G, Deppe H, Milz S, Schieker M, Kolk A. Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone. 2005;37:441–5.CrossRef
32.
Zurück zum Zitat Pautke C, Vogt S, Tischer T, Deppe H, Milz S, Schieker M, Kolk A. Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone. 2005;37:441–5.CrossRef Pautke C, Vogt S, Tischer T, Deppe H, Milz S, Schieker M, Kolk A. Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone. 2005;37:441–5.CrossRef
33.
Zurück zum Zitat Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res. 2007;25(7):941–50.CrossRef Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res. 2007;25(7):941–50.CrossRef
34.
Zurück zum Zitat Simank HG, Stuber M, Frahm R, Helbig L, van Lenthe H, Muller R. The influence of surface coatings of dicalcium phosphate (DCPD) and growth and differentiation factor-5 (GDF-5) on the stability of titanium implants in vivo. Biomaterials. 2006;27(21):3988–94.CrossRef Simank HG, Stuber M, Frahm R, Helbig L, van Lenthe H, Muller R. The influence of surface coatings of dicalcium phosphate (DCPD) and growth and differentiation factor-5 (GDF-5) on the stability of titanium implants in vivo. Biomaterials. 2006;27(21):3988–94.CrossRef
35.
Zurück zum Zitat Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res A. 2007;81(4):888–99.CrossRef Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res A. 2007;81(4):888–99.CrossRef
36.
Zurück zum Zitat Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials. 2006;27(7):1071–80.CrossRef Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials. 2006;27(7):1071–80.CrossRef
37.
Zurück zum Zitat Nath S, Basu B, Mohanty M, Mohanan PV. In vivo response of novel calcium phosphate-mullite composites: results up to 12 weeks of implantation. J Biomed Mater Res B Appl Biomater. 2009;90(2):547–57.CrossRef Nath S, Basu B, Mohanty M, Mohanan PV. In vivo response of novel calcium phosphate-mullite composites: results up to 12 weeks of implantation. J Biomed Mater Res B Appl Biomater. 2009;90(2):547–57.CrossRef
38.
Zurück zum Zitat Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A. 2010;92(1):232–7.CrossRef Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A. 2010;92(1):232–7.CrossRef
39.
Zurück zum Zitat Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26(27):5444–53.CrossRef Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26(27):5444–53.CrossRef
40.
Zurück zum Zitat Vogel M, Voigt C, Knabe C, Radlanski RJ, Gross UM, Muller-Mai CM. Development of multinuclear giant cells during the degradation of bioglass particles in rabbits. J Biomed Mater Res A. 2004;70(3):370–9.CrossRef Vogel M, Voigt C, Knabe C, Radlanski RJ, Gross UM, Muller-Mai CM. Development of multinuclear giant cells during the degradation of bioglass particles in rabbits. J Biomed Mater Res A. 2004;70(3):370–9.CrossRef
41.
Zurück zum Zitat Vogel M, Voigt C, Gross UM, Muller-Mai CM. In vivo comparison of bioactive glass particles in rabbits. Biomaterials. 2001;22(4):357–62.CrossRef Vogel M, Voigt C, Gross UM, Muller-Mai CM. In vivo comparison of bioactive glass particles in rabbits. Biomaterials. 2001;22(4):357–62.CrossRef
42.
Zurück zum Zitat Li YW, Leong JC, Lu WW, Luk KD, Cheung KM, Chiu KY, et al. A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. J Biomed Mater Res. 2000;52(1):164–70.CrossRef Li YW, Leong JC, Lu WW, Luk KD, Cheung KM, Chiu KY, et al. A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. J Biomed Mater Res. 2000;52(1):164–70.CrossRef
43.
Zurück zum Zitat Blencke BA, Bromer H, Deutscher KK. Compatibility and long-term stability of glass-ceramic implants. J Biomed Mater Res. 1978;12:307–16.CrossRef Blencke BA, Bromer H, Deutscher KK. Compatibility and long-term stability of glass-ceramic implants. J Biomed Mater Res. 1978;12:307–16.CrossRef
44.
Zurück zum Zitat Ryhanen J, Kallioinen M, Tuukkanen J, Lehenkari P, Junila J, Niemela E, Sanvik P, Serlo W. Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. Biomaterials. 1999;20:1309–17.CrossRef Ryhanen J, Kallioinen M, Tuukkanen J, Lehenkari P, Junila J, Niemela E, Sanvik P, Serlo W. Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. Biomaterials. 1999;20:1309–17.CrossRef
45.
Zurück zum Zitat Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77(2):177–97.CrossRef Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77(2):177–97.CrossRef
46.
Zurück zum Zitat Basle MF, Rebel A, Grizon F, Daculsi G, Passuti N, Filmon R. Cellular response to calcium phosphate ceramics implanted in rabbit bone. J Mater Sci Mater Med. 1993;4:273–80.CrossRef Basle MF, Rebel A, Grizon F, Daculsi G, Passuti N, Filmon R. Cellular response to calcium phosphate ceramics implanted in rabbit bone. J Mater Sci Mater Med. 1993;4:273–80.CrossRef
47.
Zurück zum Zitat Boss JH. Osseointegration. J Long Term Eff Med Impl. 1999;18:1–10. Boss JH. Osseointegration. J Long Term Eff Med Impl. 1999;18:1–10.
48.
Zurück zum Zitat Holand W, Vogel W, Naumann K, Gummel J. Interface reactions between machinable bioactive glass-ceramics and bone. J Biomed Mater Res. 1985;19:303–12.CrossRef Holand W, Vogel W, Naumann K, Gummel J. Interface reactions between machinable bioactive glass-ceramics and bone. J Biomed Mater Res. 1985;19:303–12.CrossRef
49.
Zurück zum Zitat Kitsugi T, Nakamura T, Yamamura T, Kokubu T, Shibuya T, Takagi M. SEM-EPMA observation of three types of apatite-containing glass-ceramics implanted in bone. The variance of a Ca-P-rich layer. J Biomed Mater Res. 1987;21:1255–71.CrossRef Kitsugi T, Nakamura T, Yamamura T, Kokubu T, Shibuya T, Takagi M. SEM-EPMA observation of three types of apatite-containing glass-ceramics implanted in bone. The variance of a Ca-P-rich layer. J Biomed Mater Res. 1987;21:1255–71.CrossRef
50.
Zurück zum Zitat Wheeler DL, Montfort MJ, McLoughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res. 2001;55:603–12.CrossRef Wheeler DL, Montfort MJ, McLoughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res. 2001;55:603–12.CrossRef
51.
Zurück zum Zitat Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.CrossRef Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.CrossRef
52.
Zurück zum Zitat Freeman CO, Brook IM. Bone response to a titanium aluminium nitride coating on metallic implants. J Mater Sci Mater Med. 2006;17:465–70.CrossRef Freeman CO, Brook IM. Bone response to a titanium aluminium nitride coating on metallic implants. J Mater Sci Mater Med. 2006;17:465–70.CrossRef
53.
Zurück zum Zitat Sasanaluckit P, Albustany KR, Doherty PJ, Williams DF. Biocompatibility of glass ionomer cements. Biomaterials 1993;4:906–916. Sasanaluckit P, Albustany KR, Doherty PJ, Williams DF. Biocompatibility of glass ionomer cements. Biomaterials 1993;4:906–916.
54.
Zurück zum Zitat Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.CrossRef Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.CrossRef
55.
Zurück zum Zitat da Rocha Barros VM, Salata LA, Sverzut CE, Xavier SP, Van Noort R, Johnson A, Hatton PV. In vivo bone tissue response to a canasiteglass-ceramic. Biomaterials. 2002;23:2895–900.CrossRef da Rocha Barros VM, Salata LA, Sverzut CE, Xavier SP, Van Noort R, Johnson A, Hatton PV. In vivo bone tissue response to a canasiteglass-ceramic. Biomaterials. 2002;23:2895–900.CrossRef
56.
Zurück zum Zitat Acharya NK, Mahajan CV, Kumar RJ, Varma HK, Menon VK. Can Iliac Crest reconstruction reduce donor site morbidity?: a study using degradable hydroxyapatite-bioactive glass ceramic composite. J Spinal Disord Tech. 2010;23:266–71.CrossRef Acharya NK, Mahajan CV, Kumar RJ, Varma HK, Menon VK. Can Iliac Crest reconstruction reduce donor site morbidity?: a study using degradable hydroxyapatite-bioactive glass ceramic composite. J Spinal Disord Tech. 2010;23:266–71.CrossRef
57.
Zurück zum Zitat Nair MB, Suresh Babu S, Varma HK, John A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 2008;4:173–81.CrossRef Nair MB, Suresh Babu S, Varma HK, John A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 2008;4:173–81.CrossRef
58.
Zurück zum Zitat Sabareeswaran A, Basu B, Shenoy SJ, Jaffer Z, Saha N, Stamboulis A. Early osseointegration of a strontium containing glass ceramic in a rabbit model. Biomaterials. 2013;34:9278–86.CrossRef Sabareeswaran A, Basu B, Shenoy SJ, Jaffer Z, Saha N, Stamboulis A. Early osseointegration of a strontium containing glass ceramic in a rabbit model. Biomaterials. 2013;34:9278–86.CrossRef
59.
Zurück zum Zitat Vogel M, Voigt C, Knabe C, Radlanski RJ, Gross UM, Müller-Mai CM. Development of multinuclear giant cells during the degradation of Bioglass particles in rabbits. J Biomed Mater Res A. 2004;70(3):370–9.CrossRef Vogel M, Voigt C, Knabe C, Radlanski RJ, Gross UM, Müller-Mai CM. Development of multinuclear giant cells during the degradation of Bioglass particles in rabbits. J Biomed Mater Res A. 2004;70(3):370–9.CrossRef
60.
Zurück zum Zitat Vestermark MT. Strontium in the bone-implant interface. Dan Med Bull. 2011;58:B4286. Vestermark MT. Strontium in the bone-implant interface. Dan Med Bull. 2011;58:B4286.
61.
Zurück zum Zitat Guida A, Towler MR, Wall JG, Hill RG, Eramo S. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett. 2003;22:1401–1403. Guida A, Towler MR, Wall JG, Hill RG, Eramo S. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett. 2003;22:1401–1403.
62.
Zurück zum Zitat Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, et al. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials. 2006;27:5127–33.CrossRef Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, et al. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials. 2006;27:5127–33.CrossRef
63.
Zurück zum Zitat Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int. 2009;20(8):1417–28.CrossRef Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int. 2009;20(8):1417–28.CrossRef
64.
Zurück zum Zitat Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31:3949–56.CrossRef Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31:3949–56.CrossRef
65.
Zurück zum Zitat Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157:1291–300.CrossRef Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157:1291–300.CrossRef
66.
Zurück zum Zitat Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;29:176–9.CrossRef Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;29:176–9.CrossRef
67.
Zurück zum Zitat Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.CrossRef Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.CrossRef
68.
Zurück zum Zitat Fromigue O, Hay E, Barbara A, Petrel C, Traiffort E, Ruat M, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med. 2009;13:2189–99.CrossRef Fromigue O, Hay E, Barbara A, Petrel C, Traiffort E, Ruat M, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med. 2009;13:2189–99.CrossRef
69.
Zurück zum Zitat Basu B, Sabareeswaran A, Shenoy SJ. Biocompatibility property of 100% strontium substituted 4.2SiO2-3Al2O3-1.5P2O5-3CaO-2CaF2 glass ceramics over 26 weeks of implantation in rabbit model: Histology and micro-Computed Tomography analysis. J Biomed Mater Res B. 2015;103:1168–1179. Basu B, Sabareeswaran A, Shenoy SJ. Biocompatibility property of 100% strontium substituted 4.2SiO2-3Al2O3-1.5P2O5-3CaO-2CaF2 glass ceramics over 26 weeks of implantation in rabbit model: Histology and micro-Computed Tomography analysis. J Biomed Mater Res B. 2015;103:1168–1179.
Metadaten
Titel
Case Study: Osseointegration of Strontium Containing Glass Ceramic
verfasst von
Bikramjit Basu
Sourabh Ghosh
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3017-8_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.