Skip to main content

2020 | OriginalPaper | Buchkapitel

Catalytic and Non-catalytic Thermolysis of Waste Polystyrene for Recovery of Fuel Grade Products and Their Characterization

verfasst von : Rohit Kumar Singh, Biswajit Ruj, Anup Kumar Sadhukhan, Parthapratim Gupta

Erschienen in: Energy Recovery Processes from Wastes

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the important types of plastic extensively used in packing industry is polystyrene (PS). Having the lowest recycling rate among other categories of plastic waste, and not been included in the roadside recycling program, polystyrene is an attractive polymer waste for recovery of energy. PS mostly contains a large volume due to high air content in its products such as styrofoam. Being produced from petroleum product, it contains a large amount of energy which can be recovered by pyrolysis process which produces fuels like pyrolytic oil, combustible gases and char (carbon). In this study, zeolite (ZSM-5) catalyst was used during the catalytic pyrolysis process. Initially, TG analysis was performed to analyze the minimum degradation temperature of PS at four different heating rates and also to determine the effect of heating rate on its degradation. From the analysis, optimum temperature was selected based on time and temperature and was used as final temperature (500 °C) for batch pyrolysis. Ten percent of the catalyst is used with 200 gm of PS waste crushed in small size of 1–2 cm and then pyrolyzed. The main product from catalytic thermolysis was non-condensable gases 52%, pyrolytic oil 42% and remaining residue as char whereas non-catalytic process produces 78% pyrolytic oil, 14% gases and remaining 8% char. The products obtained from cracking in presence and absence of catalyst mainly constitutes aromatic, branched and cyclic hydrocarbons in the liquid phase, a high amount of hydrogen and C1–C4 hydrocarbons and some amount of CO and CO2 due to the presence of oxygen in the raw material. The presence of catalyst during degradation increases the cracking forming a high amount of gaseous product whereas produces low range hydrocarbons (C8–C16) in oil phase as compared to non-catalytic pyrolytic oil which contains a high range of hydrocarbons (C8–C25).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233–248.CrossRef Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233–248.CrossRef
2.
Zurück zum Zitat Singh, R. K., & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 174, 164–171.CrossRef Singh, R. K., & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 174, 164–171.CrossRef
3.
Zurück zum Zitat Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72, 97–102.CrossRef Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72, 97–102.CrossRef
4.
Zurück zum Zitat Williams, P. T., & Williams, E. A. (1999). Interaction of plastics in mixed-plastics pyrolysis. Energy & Fuels, 13(1), 188–196.CrossRef Williams, P. T., & Williams, E. A. (1999). Interaction of plastics in mixed-plastics pyrolysis. Energy & Fuels, 13(1), 188–196.CrossRef
5.
Zurück zum Zitat Mo, Y., Zhao, L., Chen, C. L., Tan, G. Y., Wang, J. Y. (2013). Comparative pyrolysis upcycling of polystyrene waste: Thermodynamics, kinetics, and product evolution profile. Journal of Thermal Analysis and Calorimetry, 111. https://doi.org/10.1007/s10973-012-2464. Mo, Y., Zhao, L., Chen, C. L., Tan, G. Y., Wang, J. Y. (2013). Comparative pyrolysis upcycling of polystyrene waste: Thermodynamics, kinetics, and product evolution profile. Journal of Thermal Analysis and Calorimetry, 111. https://​doi.​org/​10.​1007/​s10973-012-2464.
6.
Zurück zum Zitat Buekens, A. (2006). Introduction to feedstock recycling of plastics. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 3–42). Hoboken: John Wiley & Sons. Buekens, A. (2006). Introduction to feedstock recycling of plastics. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 3–42). Hoboken: John Wiley & Sons.
8.
Zurück zum Zitat Butler, E., Devlin, G., McDonnell, K. Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research. Butler, E., Devlin, G., McDonnell, K. Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research.
9.
Zurück zum Zitat Muhammad, C., Onwudili, J. A., & Williams, P. T. (2015). Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis—Catalysis reactor for fuel production. Energy & Fuels, 29(4), 2601–2609.CrossRef Muhammad, C., Onwudili, J. A., & Williams, P. T. (2015). Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis—Catalysis reactor for fuel production. Energy & Fuels, 29(4), 2601–2609.CrossRef
10.
Zurück zum Zitat Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86, 293–303.CrossRef Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86, 293–303.CrossRef
12.
Zurück zum Zitat Liu, Y., Qian, J., & Wang, J. (1999). Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Processing Technology, 63, 45.CrossRef Liu, Y., Qian, J., & Wang, J. (1999). Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Processing Technology, 63, 45.CrossRef
Metadaten
Titel
Catalytic and Non-catalytic Thermolysis of Waste Polystyrene for Recovery of Fuel Grade Products and Their Characterization
verfasst von
Rohit Kumar Singh
Biswajit Ruj
Anup Kumar Sadhukhan
Parthapratim Gupta
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9228-4_3