Skip to main content
Erschienen in: Journal of Nanoparticle Research 9/2018

01.09.2018 | Research Paper

Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals

verfasst von: Qiangu Yan, Jinghao Li, Xuefeng Zhang, El Barbary Hassan, Chuji Wang, Jilei Zhang, Zhiyong Cai

Erschienen in: Journal of Nanoparticle Research | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Catalytic graphitization of kraft lignin to nano-materials was investigated over four transitional metal catalysts (Ni, Cu, Fe, and Mo) through a thermal treatment process under an argon flow at 1000 °C. The catalytic thermal process was examined using thermal gravimetric analysis (TGA) and temperature-programmed decomposition (TPD) experiments. The crystal structure and morphology of the thermal-treated metal-lignin samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Catalytic graphitization of kraft lignin to nano-materials was investigated over four transitional metal catalysts (Ni, Cu, Fe, and Mo) through a catalytic thermal treatment process. It was observed that multi-layer graphene-encapsulated metal nanoparticles were the main products, beside along with some graphene sheets/flakes. The particle sizes and graphene shell layers were significantly affected by the promoted metals. BET surface areas of samples obtained from different metal precursors were in the range of 88–115 m2/g within the order of Ni- > Fe- > Mo- > Cu-. Thermal gravimetric analysis (TGA) and temperature-programmed decomposition (TPD) experimental results showed that adding transitional metals could promote the decomposition and carbonization of kraft lignin. The catalytic activity increased with an order of Mo≅Cu < Ni≅Fe. XRD results show that face-centered cubic (fcc) Cu crystals is formed in the thermal-treated Cu-lignin sample, fcc nickel phase for the Ni-lignin sample, β-Mo2C hexagonal phase for the Mo-lignin sample and α-Fe, γ-iron, and cementite(Fe3C) for the Fe-lignin sample. Average particle sizes of these crystal phases calculated using the Scherrer formula are 52.4 nm, 56.2 nm, 21.0 nm, 23.3 nm, 11.3 nm, and 32.8 nm for Ni, Cu, β-Mo2C, α-Fe, γ-iron, and Fe3C, respectively. Raman results prove that the graphitization activity of these four metals is in the order of Cu < Mo < Ni < Fe. Metal properties such as catalytic activity, carbon solubility, and tendency of metal carbide formation were related to the graphene-based structure formation during catalytic graphitization of kraft lignin process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10(9):1861–1877CrossRef Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10(9):1861–1877CrossRef
Zurück zum Zitat Handbook ASM (1992) Alloy phase diagrams. ASM International 3:2–319 Handbook ASM (1992) Alloy phase diagrams. ASM International 3:2–319 
Zurück zum Zitat Bacsa RR, Cameán I, Ramos A, Garcia AB, Tishkova V, Bacsa WS, Gallagher JR, Miller JT, Navas H, Jourdain V, Girleanu M, Ersen O, Serp P (2015) Few layer graphene synthesis on transition metal ferrite catalysts. Carbon 89:350–360CrossRef Bacsa RR, Cameán I, Ramos A, Garcia AB, Tishkova V, Bacsa WS, Gallagher JR, Miller JT, Navas H, Jourdain V, Girleanu M, Ersen O, Serp P (2015) Few layer graphene synthesis on transition metal ferrite catalysts. Carbon 89:350–360CrossRef
Zurück zum Zitat Biedunkiewicz A, Krawczyk M, Gabriel-Polrolniczak U, Figiel P (2014) Synthesis of ceramics by sol–gel method in molybdenum, silicon and carbon containing systems. Thermogravimetric studies. Adv Powder Technol 25:1462–1468CrossRef Biedunkiewicz A, Krawczyk M, Gabriel-Polrolniczak U, Figiel P (2014) Synthesis of ceramics by sol–gel method in molybdenum, silicon and carbon containing systems. Thermogravimetric studies. Adv Powder Technol 25:1462–1468CrossRef
Zurück zum Zitat Chesnokov V, Buyanov RA (1987) Mechanism for the formation of carbon deposits from benzene on iron and nickel. Kinet Catal 28:403–407 Chesnokov V, Buyanov RA (1987) Mechanism for the formation of carbon deposits from benzene on iron and nickel. Kinet Catal 28:403–407
Zurück zum Zitat Demir M, Kahveci Z, Aksoy B, Palapati NKR, Subramanian A, Cullinan HT, El-Kaderi HM, Harris CT, Gupta RB (2015) Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Ind Eng Chem Res 54:10731–10739CrossRef Demir M, Kahveci Z, Aksoy B, Palapati NKR, Subramanian A, Cullinan HT, El-Kaderi HM, Harris CT, Gupta RB (2015) Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Ind Eng Chem Res 54:10731–10739CrossRef
Zurück zum Zitat Derbyshire FJ, Presland AEB, Trimm DL (1975) Graphite formation by the dissolution—precipitation of carbon in cobalt, nickel and iron. Carbon 13:111–113CrossRef Derbyshire FJ, Presland AEB, Trimm DL (1975) Graphite formation by the dissolution—precipitation of carbon in cobalt, nickel and iron. Carbon 13:111–113CrossRef
Zurück zum Zitat Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276CrossRef Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276CrossRef
Zurück zum Zitat Ishikawa T, Yoshizawa S (1963) Catalyst on graphitization of carbon (II) - catalytic actions of various metallic elements. J Chem Soc Japan Ind Sect 66:14–18 Ishikawa T, Yoshizawa S (1963) Catalyst on graphitization of carbon (II) - catalytic actions of various metallic elements. J Chem Soc Japan Ind Sect 66:14–18
Zurück zum Zitat Kakunuri M, Kali S, Sharma CS (2016) Catalytic graphitization of resorcinol-formaldehyde xerogel and its effect on lithium ion intercalation. J Anal Appl Pyrolysis 117:317–324CrossRef Kakunuri M, Kali S, Sharma CS (2016) Catalytic graphitization of resorcinol-formaldehyde xerogel and its effect on lithium ion intercalation. J Anal Appl Pyrolysis 117:317–324CrossRef
Zurück zum Zitat Leng W, Barnes HM, Yan Q, Cai Z, Zhang J (2017) Low temperature synthesis of graphene-encapsulated copper nanoparticles from kraft lignin. Mater Lett 185(15):131–134 Leng W, Barnes HM, Yan Q, Cai Z, Zhang J (2017) Low temperature synthesis of graphene-encapsulated copper nanoparticles from kraft lignin. Mater Lett 185(15):131–134
Zurück zum Zitat Maldonado-Hódar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16(9):4367–4373CrossRef Maldonado-Hódar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16(9):4367–4373CrossRef
Zurück zum Zitat Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, Oliveira LCS (2014) Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim 115:145–151CrossRef Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, Oliveira LCS (2014) Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim 115:145–151CrossRef
Zurück zum Zitat Mun S.P., Cai Z., Zhang J., Fe-catalyzed thermal conversion of sodium lignosulfonate to graphene, 2013 Mun S.P., Cai Z., Zhang J., Fe-catalyzed thermal conversion of sodium lignosulfonate to graphene, 2013
Zurück zum Zitat Otani S, Fukuoka Y, Igarashi B, Sasaki K (1969) Method for producing carbonized lignin fiber. U.S. Patent 3,461,082 Otani S, Fukuoka Y, Igarashi B, Sasaki K (1969) Method for producing carbonized lignin fiber. U.S. Patent 3,461,082
Zurück zum Zitat Ōya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17:309–322CrossRef Ōya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17:309–322CrossRef
Zurück zum Zitat Ōya A, Ōtani S (1979) Catalytic graphitization of carbons by various metals. Carbon 17:131–137CrossRef Ōya A, Ōtani S (1979) Catalytic graphitization of carbons by various metals. Carbon 17:131–137CrossRef
Zurück zum Zitat Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRef Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRef
Zurück zum Zitat Ruiz-Rosas R, Valero-Romero MJ, Salinas-Torres D, Rodríguez-Mirasol J, Cordero T, Morallón E, Cazorla-Amorós D (2014) Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. ChemSusChem 7:1458–1467CrossRef Ruiz-Rosas R, Valero-Romero MJ, Salinas-Torres D, Rodríguez-Mirasol J, Cordero T, Morallón E, Cazorla-Amorós D (2014) Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. ChemSusChem 7:1458–1467CrossRef
Zurück zum Zitat Suhas, Carrott PJM, Ribeiro Carrott MML (2007) Lignin – from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312CrossRef Suhas, Carrott PJM, Ribeiro Carrott MML (2007) Lignin – from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312CrossRef
Zurück zum Zitat Wang R, Lu G, Wenming Q, Yu J (2016) Catalytic graphitization of coal-based carbon materials with light rare earth elements. Langmuir 32(34):8583–8592CrossRef Wang R, Lu G, Wenming Q, Yu J (2016) Catalytic graphitization of coal-based carbon materials with light rare earth elements. Langmuir 32(34):8583–8592CrossRef
Zurück zum Zitat Wang R, Lu G, Zhuang H, Yu J (2017) Synergistic catalytic effect of light rare earth element and other additives on the degree of graphitization and properties of graphite. J Mater Sci 52:663–673CrossRef Wang R, Lu G, Zhuang H, Yu J (2017) Synergistic catalytic effect of light rare earth element and other additives on the degree of graphitization and properties of graphite. J Mater Sci 52:663–673CrossRef
Zurück zum Zitat Weisweiler W, Subramanian N, Terwiesch B (1971) Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon. Carbon NY 9:755–761CrossRef Weisweiler W, Subramanian N, Terwiesch B (1971) Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon. Carbon NY 9:755–761CrossRef
Zurück zum Zitat Yan Q, Zhang X, Li J, Hassan EB, Wang C, Zhang J, Cai Z (2018) Catalytic conversion of Kraft lignin to bio-multilayer graphene materials under different atmospheres. J Mater Sci 53(11):8020–8029 Yan Q, Zhang X, Li J, Hassan EB, Wang C, Zhang J, Cai Z (2018) Catalytic conversion of Kraft lignin to bio-multilayer graphene materials under different atmospheres. J Mater Sci 53(11):8020–8029
Zurück zum Zitat Yokokawa C, Hosokawa, Takegami KY (1966) Low temperature catalytic graphitization of hard carbon. Carbon 4:459–465CrossRef Yokokawa C, Hosokawa, Takegami KY (1966) Low temperature catalytic graphitization of hard carbon. Carbon 4:459–465CrossRef
Zurück zum Zitat Yudasaka M, Tasaka K, Kikuchi R, Ohki Y, Yoshimura S, Ota E (1997) Influence of chemical bond of carbon on Ni catalyzed graphitization. J Appl Phys 81:7623–7629CrossRef Yudasaka M, Tasaka K, Kikuchi R, Ohki Y, Yoshimura S, Ota E (1997) Influence of chemical bond of carbon on Ni catalyzed graphitization. J Appl Phys 81:7623–7629CrossRef
Metadaten
Titel
Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals
verfasst von
Qiangu Yan
Jinghao Li
Xuefeng Zhang
El Barbary Hassan
Chuji Wang
Jilei Zhang
Zhiyong Cai
Publikationsdatum
01.09.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 9/2018
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-018-4317-0

Weitere Artikel der Ausgabe 9/2018

Journal of Nanoparticle Research 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.