Skip to main content

2022 | OriginalPaper | Buchkapitel

Catalytic Growth of Carbon Nanostructures in Glow Discharge

verfasst von : Andrii Breus, Sergey Abashin, Ivan Lukashov, Oleksii Serdiuk, Oleg Baranov

Erschienen in: Advances in Design, Simulation and Manufacturing V

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Glow discharge ignited between a graphite cathode and a copper anode was applied to conduct a process of carbon nanostructure growth in an argon atmosphere. During the first stage of the experiment, the samples mounted on the cathode were heated up till turning red, which significantly increased the thermionic emission and caused the formation of cathode arc spots on the sample surface. The arcing with a period of 3 to 5 s was maintained for 5 more minutes. As a result, a number of craters were observed on the samples, which were investigated using the SEM technique. Carbon nanotubes and bundles of them were found along the whole surface of the samples, and the tips of the nano- and microsized structures were capped by the copper particles, which states in favor of the catalytic growth. The yield of the carbon structures was richer in the craters and the regions at the proximity to them. In addition, a carbon deposit was taken from the anode and studied by use of TEM. In this case, typical nanostructures resemble the branches of spruce trees or balls of rolled nanotubes with a diameter of about 15 to 30 nm; at that, the anode nanostructures do not show any traces of the copper catalyst. Thus, the proposed setup is suitable to grow various carbon nanostructures in a catalytic process in the presence of copper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, N., et al.: Neural interfaces engineered via micro- and nanostructured coatings. Nano Today 14, 59–83 (2017)CrossRef Chen, N., et al.: Neural interfaces engineered via micro- and nanostructured coatings. Nano Today 14, 59–83 (2017)CrossRef
2.
Zurück zum Zitat Giubileo, F., Di Bartolomeo, A., Iemmo, L., Luongo, G., Urban, F.: Field emission from carbon nanostructures. Appl. Sci. 8(4), 526 (2018)CrossRef Giubileo, F., Di Bartolomeo, A., Iemmo, L., Luongo, G., Urban, F.: Field emission from carbon nanostructures. Appl. Sci. 8(4), 526 (2018)CrossRef
3.
Zurück zum Zitat Henna, T.K., Raphey, V.R., Sankar, R., Ameena Shirin, V.K., Gangadharappa, H.V., Pramod, K.: Carbon nanostructures: the drug and the delivery system for brain disorders. Int. J. Pharm. 587, 119701 (2020)CrossRef Henna, T.K., Raphey, V.R., Sankar, R., Ameena Shirin, V.K., Gangadharappa, H.V., Pramod, K.: Carbon nanostructures: the drug and the delivery system for brain disorders. Int. J. Pharm. 587, 119701 (2020)CrossRef
5.
Zurück zum Zitat Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M.V.: Review on the antimicrobial properties of carbon nanostructures. Materials 10(9), 1066 (2017)CrossRef Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M.V.: Review on the antimicrobial properties of carbon nanostructures. Materials 10(9), 1066 (2017)CrossRef
6.
Zurück zum Zitat Bannov, A.G., Jasek, O., Manakhov, A., Marik, M., Necas, D., Zajickova, L.: High-performance ammonia gas sensors based on plasma treated carbon nanostructures. IEEE Sens. J. 17(7), 1964–1970 (2017)CrossRef Bannov, A.G., Jasek, O., Manakhov, A., Marik, M., Necas, D., Zajickova, L.: High-performance ammonia gas sensors based on plasma treated carbon nanostructures. IEEE Sens. J. 17(7), 1964–1970 (2017)CrossRef
7.
Zurück zum Zitat Malik, R., et al.: Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116, 579–590 (2017)CrossRef Malik, R., et al.: Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116, 579–590 (2017)CrossRef
8.
Zurück zum Zitat Jiang, J., et al.: Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2017)CrossRef Jiang, J., et al.: Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2017)CrossRef
10.
Zurück zum Zitat Khataee, A., Sajjadi, S., Hasanzadeh, A., Vahid, B., Joo, S.W.: One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process. J. Environ. Manage. 199, 31–45 (2017)CrossRef Khataee, A., Sajjadi, S., Hasanzadeh, A., Vahid, B., Joo, S.W.: One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process. J. Environ. Manage. 199, 31–45 (2017)CrossRef
11.
Zurück zum Zitat Sobczyk, A.T., Jaworek, A.: Carbon microstructures synthesis in low temperature plasma generated by microdischarges. Appl. Sci. 11(13), 5845 (2021)CrossRef Sobczyk, A.T., Jaworek, A.: Carbon microstructures synthesis in low temperature plasma generated by microdischarges. Appl. Sci. 11(13), 5845 (2021)CrossRef
12.
Zurück zum Zitat Kalyan Kamal, S.S., et al.: A novel Approach for the synthesis of iron carbide nanostructures using spark plasma sintering. J. Magn. Magn. Mater. 510, 166935 (2020)CrossRef Kalyan Kamal, S.S., et al.: A novel Approach for the synthesis of iron carbide nanostructures using spark plasma sintering. J. Magn. Magn. Mater. 510, 166935 (2020)CrossRef
13.
Zurück zum Zitat Cho, H.J., Kondo, H., Ishikawa, K., Sekine, M., Hiramatsu, M., Hori, M.: Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68, 380–388 (2014)CrossRef Cho, H.J., Kondo, H., Ishikawa, K., Sekine, M., Hiramatsu, M., Hori, M.: Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68, 380–388 (2014)CrossRef
14.
Zurück zum Zitat Ye, X., Zhou, H., Levchenko, I., Bazaka, K., Xu, S., Xiao, S.: Low-temperature synthesis of graphene by ICP-assisted amorphous carbon sputtering. Chem. Sel. 3(30), 8779–8785 (2018) Ye, X., Zhou, H., Levchenko, I., Bazaka, K., Xu, S., Xiao, S.: Low-temperature synthesis of graphene by ICP-assisted amorphous carbon sputtering. Chem. Sel. 3(30), 8779–8785 (2018)
15.
Zurück zum Zitat Zhou, H., et al.: Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments. ACS Appl. Mater. Interfaces 11, 15122–15132 (2019)CrossRef Zhou, H., et al.: Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments. ACS Appl. Mater. Interfaces 11, 15122–15132 (2019)CrossRef
16.
Zurück zum Zitat Bundaleska, N., et al.: Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions. Phys. Chem. Chem. Phys. 20(20), 13810–13824 (2018)CrossRef Bundaleska, N., et al.: Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions. Phys. Chem. Chem. Phys. 20(20), 13810–13824 (2018)CrossRef
17.
Zurück zum Zitat Tatarova, E., et al.: Microwave plasmas applied for the synthesis of free standing graphene sheets. J. Phys. D Appl. Phys. 47(38), 385501 (2014) Tatarova, E., et al.: Microwave plasmas applied for the synthesis of free standing graphene sheets. J. Phys. D Appl. Phys. 47(38), 385501 (2014)
18.
Zurück zum Zitat Ghosh, S., Polaki, S.R., Kumar, N., Amirthapandian, S., Kamruddin, M., Ostrikov, K.: Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J. Nanotechnol. 8, 1658–1670 (2017)CrossRef Ghosh, S., Polaki, S.R., Kumar, N., Amirthapandian, S., Kamruddin, M., Ostrikov, K.: Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J. Nanotechnol. 8, 1658–1670 (2017)CrossRef
19.
Zurück zum Zitat Sahoo, G., Polaki, S.R., Ghosh, S., Krishna, N.G., Kamruddin, M., Ostrikov, K.: Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Materials 14, 297–305 (2018)CrossRef Sahoo, G., Polaki, S.R., Ghosh, S., Krishna, N.G., Kamruddin, M., Ostrikov, K.: Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Materials 14, 297–305 (2018)CrossRef
20.
Zurück zum Zitat Levchenko, I., Romanov, M., Baranov, O., Keidar, M.: Ion deposition in a crossed E×B field system with vacuum arc plasma sources. Vacuum 72(3), 335–344 (2003)CrossRef Levchenko, I., Romanov, M., Baranov, O., Keidar, M.: Ion deposition in a crossed E×B field system with vacuum arc plasma sources. Vacuum 72(3), 335–344 (2003)CrossRef
21.
Zurück zum Zitat Baranov, O.O., Fang, J., Rider, A.E., Kumar, S., Ostrikov, K.: Effect of ion current density on the properties of vacuum arc-deposited TiN coatings. IEEE Trans. Plasma Sci. 41(12), 3640–3644 (2013)CrossRef Baranov, O.O., Fang, J., Rider, A.E., Kumar, S., Ostrikov, K.: Effect of ion current density on the properties of vacuum arc-deposited TiN coatings. IEEE Trans. Plasma Sci. 41(12), 3640–3644 (2013)CrossRef
22.
Zurück zum Zitat Baranov, O., Romanov, M.: Current distribution on the substrate in a vacuum arc deposition setup. Plasma Process. Polym. 5(3), 256–262 (2008)CrossRef Baranov, O., Romanov, M.: Current distribution on the substrate in a vacuum arc deposition setup. Plasma Process. Polym. 5(3), 256–262 (2008)CrossRef
23.
Zurück zum Zitat Li, D., Wang, C., Lu, Z., Song, M., Xia, W., Xia, W.: Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge. Fullerenes, Nanotubes, Carbon Nanostruct. 28(10), 846–856 (2020)CrossRef Li, D., Wang, C., Lu, Z., Song, M., Xia, W., Xia, W.: Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge. Fullerenes, Nanotubes, Carbon Nanostruct. 28(10), 846–856 (2020)CrossRef
24.
Zurück zum Zitat Zhang, D., et al.: Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142, 278–284 (2018)CrossRef Zhang, D., et al.: Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142, 278–284 (2018)CrossRef
25.
Zurück zum Zitat Yatom, S., Selinsky, R.S., Koel, B.E., Raitses, Y.: Synthesis-on and synthesis-off modes of carbon arc operation during synthesis of carbon nanotubes. Carbon 125, 336–343 (2017)CrossRef Yatom, S., Selinsky, R.S., Koel, B.E., Raitses, Y.: Synthesis-on and synthesis-off modes of carbon arc operation during synthesis of carbon nanotubes. Carbon 125, 336–343 (2017)CrossRef
26.
Zurück zum Zitat Yeh, Y.-W., Raitses, Y., Yao, N.: Structural variations of the cathode deposit in the carbon arc. Carbon 105, 490–495 (2016)CrossRef Yeh, Y.-W., Raitses, Y., Yao, N.: Structural variations of the cathode deposit in the carbon arc. Carbon 105, 490–495 (2016)CrossRef
27.
Zurück zum Zitat Fang, X., Shashurin, A., Teel, G., Keidar, M.: Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon 107, 273–280 (2016)CrossRef Fang, X., Shashurin, A., Teel, G., Keidar, M.: Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon 107, 273–280 (2016)CrossRef
28.
Zurück zum Zitat Bystrov, K., et al.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)CrossRef Bystrov, K., et al.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)CrossRef
29.
Zurück zum Zitat Wang, C., Li, D., Lu, Z., Song, M., Xia, W.: Synthesis of carbon nanoparticles in a non-thermal plasma process. Chem. Eng. Sci. 227, 115921 (2020)CrossRef Wang, C., Li, D., Lu, Z., Song, M., Xia, W.: Synthesis of carbon nanoparticles in a non-thermal plasma process. Chem. Eng. Sci. 227, 115921 (2020)CrossRef
30.
Zurück zum Zitat Su, Y., Zhang, Y.: Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon 83, 90–99 (2015)CrossRef Su, Y., Zhang, Y.: Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon 83, 90–99 (2015)CrossRef
31.
Zurück zum Zitat Levchenko, I., Cvelbar, U., Keidar, M.: Graphene sswth. Graphene 5, 81–89 (2016)CrossRef Levchenko, I., Cvelbar, U., Keidar, M.: Graphene sswth. Graphene 5, 81–89 (2016)CrossRef
33.
Metadaten
Titel
Catalytic Growth of Carbon Nanostructures in Glow Discharge
verfasst von
Andrii Breus
Sergey Abashin
Ivan Lukashov
Oleksii Serdiuk
Oleg Baranov
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-06025-0_37

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.