Skip to main content
Erschienen in: Microsystem Technologies 8/2018

02.02.2018 | Technical Paper

Catheter type thermal flow sensor with small footprint for measuring breathing function

verfasst von: Y. Hasegawa, H. Kawaoka, Y. Mitsunari, M. Matsushima, T. Kawabe, M. Shikida

Erschienen in: Microsystem Technologies | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We preivously developed a catheter type flow sensor for measuring breathing and heartbeat information from breathing at the mouth [Hasegawa et al. J Micromech Microeng 27(12): 125016, (2017); Kawaoka et al. Tech. Dig. IEEE Micro Electro Mechanical Systems Conference 2016, pp 359–362]. In this study, we redesigned and developed the new sensor configuraiton for the catheter flow sensor to downsize and improve the sensor characteristics. The previous flow sensor consists of two pairs of a heater and a temperature compensation sensor for flow rate detection. The two heaters also functioned not only for flow rate detection but also for flow direction detection. The two temperature compensation sensors had a large footprint and corresponded to each heater. Therefore, the sensor occupied a large area, and it was necessary to match the heater characteristics for flow rate detection. The newly designed sensor is composed of a set of a heater and a temperature compensation sensor and two flow direction sensors. By providing the new flow direction sensors, the number of temperature compensation sensors with a large footprint was reduced to one. Thus, the area of the new sensor design was 15.0 mm2, which was reduced to 54.5% of the 27.0 mm2 of the previous sensor area by providing the flow direction sensors. Then, the new catheter type flow sensor was fabricated, and the flow characteristics for measuring breathing funciton were evaluated. Finally, we applied the catheter type flow sensor to an animal experiment using a rat, and it could evaluate the flow rate characteristics of the rat’s breathing as a reciprocating flow including flow direction. Moreover, the obtained breathing characteristics were within the range of the physiological values of rats.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chandra NC, Hazinski MF (1997) American Red cross basic life support for healthcare providers handbook. American Red Cross, Washington, D.C. Chandra NC, Hazinski MF (1997) American Red cross basic life support for healthcare providers handbook. American Red Cross, Washington, D.C.
Zurück zum Zitat Demirci U, Oralkan O, Johnson JA, Ergun AS, Karaman M, Khuri-Yakub BT (2001) Capacitive micromachined ultrasonic transducer arrays for medical imaging: experimental results. In: Ultrasonics Symposium, 2001 IEEE, Atlanta GA, vol 2, pp 957–960, 7–10 Oct 2001 Demirci U, Oralkan O, Johnson JA, Ergun AS, Karaman M, Khuri-Yakub BT (2001) Capacitive micromachined ultrasonic transducer arrays for medical imaging: experimental results. In: Ultrasonics Symposium, 2001 IEEE, Atlanta GA, vol 2, pp 957–960, 7–10 Oct 2001
Zurück zum Zitat Hasegawa Y, Kawaoka H, Yamada T, Matsushima M, Kawabe T, Shikida M (2017) Respiration and heartbeat signal detection from airflow at airway in rat by catheter flow sensor with temparature compensation function. J Micromech Microeng 27(12):125016CrossRef Hasegawa Y, Kawaoka H, Yamada T, Matsushima M, Kawabe T, Shikida M (2017) Respiration and heartbeat signal detection from airflow at airway in rat by catheter flow sensor with temparature compensation function. J Micromech Microeng 27(12):125016CrossRef
Zurück zum Zitat Jovanov E, Raskovic D, Hormigo R (2001) Thermistor-based breathing sensor for circadian rhythm evaluation. In: Proc. 38th Annu. Rocky Mountain Bioengineering Symp. RMBS 2001, pp 493–497, 2001 Apr Jovanov E, Raskovic D, Hormigo R (2001) Thermistor-based breathing sensor for circadian rhythm evaluation. In: Proc. 38th Annu. Rocky Mountain Bioengineering Symp. RMBS 2001, pp 493–497, 2001 Apr
Zurück zum Zitat Kawaoka H, Yamada T, Matsushima M, Kawabe T, Shikida M (2015a) Detection of both heartbeat and respiration signals from airflow at mouth by using single catheter flow sensor. In: Tech. Digest of the 18th international conference on solid-state sensors, actuators and microsystems, Anchorage, USA, 2015, pp 1755–1758 Kawaoka H, Yamada T, Matsushima M, Kawabe T, Shikida M (2015a) Detection of both heartbeat and respiration signals from airflow at mouth by using single catheter flow sensor. In: Tech. Digest of the 18th international conference on solid-state sensors, actuators and microsystems, Anchorage, USA, 2015, pp 1755–1758
Zurück zum Zitat Kawaoka H, Yamada T, Matsushima M, Kawabe T, Hasegawa Y, Shikida M (2015b) Extraction of heartbeat signal from airflow at mouth by flow sensor. In: Proceedings of IEEE sensors conference, Busan, Nov 2015, pp 279–282 Kawaoka H, Yamada T, Matsushima M, Kawabe T, Hasegawa Y, Shikida M (2015b) Extraction of heartbeat signal from airflow at mouth by flow sensor. In: Proceedings of IEEE sensors conference, Busan, Nov 2015, pp 279–282
Zurück zum Zitat Kawaoka H, Yamada T, Matsushima M, Kawabe T, Hasegawa Y, Shikida M (2016) Detection of kinetic heartbeat signals from airflow at mouth by catheter flow sensor with temperature compensation. In: Tech Dig IEEE micro electro mechanical systems conference, Shanghai, China, Jan 2016, pp 359–362 Kawaoka H, Yamada T, Matsushima M, Kawabe T, Hasegawa Y, Shikida M (2016) Detection of kinetic heartbeat signals from airflow at mouth by catheter flow sensor with temperature compensation. In: Tech Dig IEEE micro electro mechanical systems conference, Shanghai, China, Jan 2016, pp 359–362
Zurück zum Zitat Kawaoka H, Yamada T, Matsushima M, Kawabe T, Hasegawa Y, Shikida M (2017) Heartbeat signal detection from analysis of airflow in rat airway under different depths of anesthesia conditions. IEEE Sens J 17(14):4369–4377CrossRef Kawaoka H, Yamada T, Matsushima M, Kawabe T, Hasegawa Y, Shikida M (2017) Heartbeat signal detection from analysis of airflow in rat airway under different depths of anesthesia conditions. IEEE Sens J 17(14):4369–4377CrossRef
Zurück zum Zitat Khuri-Yakub BT, Oralkan O (2011) Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J Micromech Microeng 21(5):54004–54015CrossRef Khuri-Yakub BT, Oralkan O (2011) Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J Micromech Microeng 21(5):54004–54015CrossRef
Zurück zum Zitat King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos Trans R Soc Lond A 214:373–432CrossRef King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos Trans R Soc Lond A 214:373–432CrossRef
Zurück zum Zitat Liu LY, Keeler EG (2015) Progress of MEMS scanning micromirrors for optical bio-imaging. Micromachines 6:1675–1689CrossRef Liu LY, Keeler EG (2015) Progress of MEMS scanning micromirrors for optical bio-imaging. Micromachines 6:1675–1689CrossRef
Zurück zum Zitat Lu CD, Kraus MF, Potsaid B (2014) Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express 5:293–311CrossRef Lu CD, Kraus MF, Potsaid B (2014) Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express 5:293–311CrossRef
Zurück zum Zitat Shikida M, Naito J, Yokota T, Kawabe T, Hayashi Y, Sato K (2009) A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in the bronchial region. J Micromech Microeng 19:105027CrossRef Shikida M, Naito J, Yokota T, Kawabe T, Hayashi Y, Sato K (2009) A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in the bronchial region. J Micromech Microeng 19:105027CrossRef
Zurück zum Zitat Shikida M, Yokota T, Kawabe T, Funaki T, Matsushima M, Iwai S, Matsunaga N, Sato K (2010) Characteristics of an optimized catheter-type thermal flow sensor for measuring reciprocating airflows in bronchial pathways. J Micromech Microeng 20:125030CrossRef Shikida M, Yokota T, Kawabe T, Funaki T, Matsushima M, Iwai S, Matsunaga N, Sato K (2010) Characteristics of an optimized catheter-type thermal flow sensor for measuring reciprocating airflows in bronchial pathways. J Micromech Microeng 20:125030CrossRef
Zurück zum Zitat Shikida M, Yoshikawa K, Matsuyama T, Yamazaki Y, Matsushima M, Kawabe T (2014) Catheter flow sensor with temperature compensation for tracheal intubation tube system. Sens Actuators A 215:155–160CrossRef Shikida M, Yoshikawa K, Matsuyama T, Yamazaki Y, Matsushima M, Kawabe T (2014) Catheter flow sensor with temperature compensation for tracheal intubation tube system. Sens Actuators A 215:155–160CrossRef
Metadaten
Titel
Catheter type thermal flow sensor with small footprint for measuring breathing function
verfasst von
Y. Hasegawa
H. Kawaoka
Y. Mitsunari
M. Matsushima
T. Kawabe
M. Shikida
Publikationsdatum
02.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3748-y

Weitere Artikel der Ausgabe 8/2018

Microsystem Technologies 8/2018 Zur Ausgabe

Neuer Inhalt