Skip to main content

2014 | OriginalPaper | Buchkapitel

Cathode and Anode Materials for Na-Ion Battery

verfasst von : Lifen Xao, Yuliang Cao, Jun Liu

Erschienen in: Low-cost Nanomaterials

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy storage is more important today than at any time in the human history. The battery systems that are pursued for clean renewable energy-based grid or the electrification of transportation need to meet the requirements of low cost and high efficiency. Li-ion battery is the most advanced battery system, but it is expensive and insufficient as a resource for widespread application. Na-ion battery is seen as a promising alternative due to the abundance of Na resource. However, the realization of the Na-ion intercalation/deintercalation mechanism is also challenging because Na ions are 40 % larger in radius than Li ions. This makes the finding of suitable host materials with high storage capacity, rapid ion uptaking rate, and long cycling life not easy. In the recent 3 years, several electrode materials were found to have energy density close to those used in Li-ion batteries. These scientific advances have greatly rekindled worldwide passion for Na-ion battery system. In this chapter, the development of the electrode materials for Na-ion batteries is briefly reviewed, with the aim of providing a wide view of the problems and future research orientations of this system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Slater MD, Kim D et al (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef Slater MD, Kim D et al (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef
2.
Zurück zum Zitat Kim S-W, Seo D-H et al (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRef Kim S-W, Seo D-H et al (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRef
3.
Zurück zum Zitat Delmas C, Fouassier C et al (1980) Structural classification and properties of the layered oxides. Physica B+C 99:81–85 Delmas C, Fouassier C et al (1980) Structural classification and properties of the layered oxides. Physica B+C 99:81–85
4.
Zurück zum Zitat Cao YL, Xiao LF et al (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160CrossRef Cao YL, Xiao LF et al (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160CrossRef
5.
Zurück zum Zitat Sauvage F, Laffont L et al (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294CrossRef Sauvage F, Laffont L et al (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294CrossRef
6.
Zurück zum Zitat Whitacre JF, Tevar A et al (2010) Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12:463–466CrossRef Whitacre JF, Tevar A et al (2010) Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12:463–466CrossRef
7.
Zurück zum Zitat Saint JA, Doeff MM et al (2008) Electrode materials with the Na0.44MnO2 structure: effect of titanium substitution on physical and electrochemical properties. Chem Mater 20:3404–3411CrossRef Saint JA, Doeff MM et al (2008) Electrode materials with the Na0.44MnO2 structure: effect of titanium substitution on physical and electrochemical properties. Chem Mater 20:3404–3411CrossRef
8.
Zurück zum Zitat Braconnier J-J, Delmas C et al (1980) Comportement electrochimique des phases NaxCoO2. Mater Res Bull 15:1797–1804CrossRef Braconnier J-J, Delmas C et al (1980) Comportement electrochimique des phases NaxCoO2. Mater Res Bull 15:1797–1804CrossRef
9.
Zurück zum Zitat Berthelot R, Carlier D et al (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80CrossRef Berthelot R, Carlier D et al (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80CrossRef
10.
Zurück zum Zitat Bhide A, Hariharan K (2011) Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics 192:360–363CrossRef Bhide A, Hariharan K (2011) Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics 192:360–363CrossRef
11.
Zurück zum Zitat Parant J-P, Olazcuaga R et al (1971) Sur quelques nouvelles phases de formule NaxMnO2 (x ≤ 1). J Solid State Chem 3:1–11CrossRef Parant J-P, Olazcuaga R et al (1971) Sur quelques nouvelles phases de formule NaxMnO2 (x ≤ 1). J Solid State Chem 3:1–11CrossRef
12.
Zurück zum Zitat Caballero A, Hernan L et al (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12:1142–1147CrossRef Caballero A, Hernan L et al (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12:1142–1147CrossRef
13.
Zurück zum Zitat West K, Zachau-Christiansen B et al (1988) Sodium insertion in vanadium oxides. Solid State Ionics 28–30(Part 2):1128–1131CrossRef West K, Zachau-Christiansen B et al (1988) Sodium insertion in vanadium oxides. Solid State Ionics 28–30(Part 2):1128–1131CrossRef
14.
Zurück zum Zitat Bach S, Baffier N et al (1989) Electrochemical sodium intercalation in Na0.33V2O5 bronze synthesized by a sol-gel process. Solid State Ionics 37:41–49CrossRef Bach S, Baffier N et al (1989) Electrochemical sodium intercalation in Na0.33V2O5 bronze synthesized by a sol-gel process. Solid State Ionics 37:41–49CrossRef
15.
Zurück zum Zitat Pereira-Ramos JP, Messina R et al (1990) Influence of the synthesis via a sol-gel process on the electrochemical lithium and sodium insertion in β-Na0.33V2O5. Solid State Ionics 40–41(Part 2):970–973CrossRef Pereira-Ramos JP, Messina R et al (1990) Influence of the synthesis via a sol-gel process on the electrochemical lithium and sodium insertion in β-Na0.33V2O5. Solid State Ionics 40–41(Part 2):970–973CrossRef
16.
Zurück zum Zitat Tepavcevic S, Xiong H et al (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6:530–538CrossRef Tepavcevic S, Xiong H et al (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6:530–538CrossRef
17.
Zurück zum Zitat Hamani D, Ati M et al (2011) NaxVO2 as possible electrode for Na-ion batteries. Electrochem Commun 13:938–941CrossRef Hamani D, Ati M et al (2011) NaxVO2 as possible electrode for Na-ion batteries. Electrochem Commun 13:938–941CrossRef
18.
Zurück zum Zitat Onoda M (2008) Geometrically frustrated triangular lattice system NaxVO2: superparamagnetism in x = 1 and trimerization in x approximate to 0.7. J Phys-Condens Matter 20:145205 Onoda M (2008) Geometrically frustrated triangular lattice system NaxVO2: superparamagnetism in x = 1 and trimerization in x approximate to 0.7. J Phys-Condens Matter 20:145205
19.
Zurück zum Zitat McQueen TM, Stephens PW et al (2008) Successive Orbital Ordering Transitions in NaVO2. Phys Rev Lett 101:166402CrossRef McQueen TM, Stephens PW et al (2008) Successive Orbital Ordering Transitions in NaVO2. Phys Rev Lett 101:166402CrossRef
20.
Zurück zum Zitat Carlier D, Cheng JH et al (2011) The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40:9306–9312CrossRef Carlier D, Cheng JH et al (2011) The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40:9306–9312CrossRef
21.
Zurück zum Zitat Komaba S, Nakayama T et al (2009) Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Trans 16:43–55CrossRef Komaba S, Nakayama T et al (2009) Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Trans 16:43–55CrossRef
22.
Zurück zum Zitat Mendiboure A, Delmas C et al (1985) Electrochemical intercalation and deintercalation of NaMnO2 bronzes. J Solid State Chem 57:323–331CrossRef Mendiboure A, Delmas C et al (1985) Electrochemical intercalation and deintercalation of NaMnO2 bronzes. J Solid State Chem 57:323–331CrossRef
23.
Zurück zum Zitat Kim D, Kang SH et al (2011) Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 1:333–336CrossRefMathSciNet Kim D, Kang SH et al (2011) Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 1:333–336CrossRefMathSciNet
24.
Zurück zum Zitat Yabuuchi N, Kajiyama M et al (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517CrossRef Yabuuchi N, Kajiyama M et al (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517CrossRef
25.
Zurück zum Zitat Padhi AK, Nanjundaswamy KS et al (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi AK, Nanjundaswamy KS et al (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
26.
Zurück zum Zitat Martha SK, Markovsky B et al (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef Martha SK, Markovsky B et al (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef
27.
Zurück zum Zitat Lim SY, Kim H et al (2012) Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159:A1393–A1397CrossRef Lim SY, Kim H et al (2012) Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159:A1393–A1397CrossRef
28.
Zurück zum Zitat Shakoor RA, Seo DH et al (2012) A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem 22:20535–20541CrossRef Shakoor RA, Seo DH et al (2012) A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem 22:20535–20541CrossRef
29.
Zurück zum Zitat Kim H, Shakoor RA et al (2013) Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–1155CrossRef Kim H, Shakoor RA et al (2013) Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–1155CrossRef
30.
Zurück zum Zitat Ellis BL, Makahnouk WRM et al (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753CrossRef Ellis BL, Makahnouk WRM et al (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753CrossRef
31.
Zurück zum Zitat Wang L, Lu Y et al (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52:1964–1967CrossRef Wang L, Lu Y et al (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52:1964–1967CrossRef
32.
Zurück zum Zitat Kang J, Baek S et al (2012) High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J Mater Chem 22:20857–20860CrossRef Kang J, Baek S et al (2012) High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J Mater Chem 22:20857–20860CrossRef
33.
Zurück zum Zitat Jian Z, Zhao L et al (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89CrossRef Jian Z, Zhao L et al (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89CrossRef
34.
Zurück zum Zitat Jian Z, Han W et al (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160CrossRef Jian Z, Han W et al (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160CrossRef
35.
Zurück zum Zitat Uebou Y, Kiyabu T et al (2002) The reports of institute of advanced material study (vol 16). Kyushu University, Fukuoka, p 1 Uebou Y, Kiyabu T et al (2002) The reports of institute of advanced material study (vol 16). Kyushu University, Fukuoka, p 1
36.
Zurück zum Zitat Saravanan K, Mason CW et al (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450CrossRef Saravanan K, Mason CW et al (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450CrossRef
37.
Zurück zum Zitat Barker J, Saidi MY et al (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem Solid-State Lett 6:A1–A4CrossRef Barker J, Saidi MY et al (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem Solid-State Lett 6:A1–A4CrossRef
38.
Zurück zum Zitat Serras P, Palomares V et al (2012) High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x. J Mater Chem 22:22301–22308CrossRef Serras P, Palomares V et al (2012) High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x. J Mater Chem 22:22301–22308CrossRef
39.
Zurück zum Zitat Le Meins JM, Crosnier-Lopez MP et al (1999) Phase Transitions in the Na3M2(PO4)2F3 Family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies. J Solid State Chem 148:260–277CrossRef Le Meins JM, Crosnier-Lopez MP et al (1999) Phase Transitions in the Na3M2(PO4)2F3 Family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies. J Solid State Chem 148:260–277CrossRef
40.
Zurück zum Zitat Zaghib K, Trottier J et al (2011) Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 196:9612–9617CrossRef Zaghib K, Trottier J et al (2011) Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 196:9612–9617CrossRef
41.
Zurück zum Zitat Lee KT, Ramesh TN et al (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600CrossRef Lee KT, Ramesh TN et al (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600CrossRef
42.
Zurück zum Zitat Moreau P, Guyomard D et al (2010) Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 22:4126–4128CrossRef Moreau P, Guyomard D et al (2010) Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 22:4126–4128CrossRef
43.
Zurück zum Zitat Kim H, Park I et al (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372CrossRef Kim H, Park I et al (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372CrossRef
44.
Zurück zum Zitat Recham N, Chotard JN et al (2009) Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 156:A993–A999CrossRef Recham N, Chotard JN et al (2009) Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 156:A993–A999CrossRef
45.
Zurück zum Zitat Ellis BL, Makahnouk WRM et al (2010) Crystal structure and electrochemical properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070CrossRef Ellis BL, Makahnouk WRM et al (2010) Crystal structure and electrochemical properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070CrossRef
46.
Zurück zum Zitat Kawabe Y, Yabuuchi N et al (2011) Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem Commun 13:1225–1228CrossRef Kawabe Y, Yabuuchi N et al (2011) Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem Commun 13:1225–1228CrossRef
47.
Zurück zum Zitat Wessells CD, McDowell MT et al (2012) Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6:1688–1694CrossRef Wessells CD, McDowell MT et al (2012) Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6:1688–1694CrossRef
48.
Zurück zum Zitat Qian J, Zhou M et al (2012) Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv Energy Mater 2:410–414CrossRef Qian J, Zhou M et al (2012) Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv Energy Mater 2:410–414CrossRef
49.
Zurück zum Zitat Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14:111–115CrossRef Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14:111–115CrossRef
50.
Zurück zum Zitat Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30(Part 2):1172–1175CrossRef Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30(Part 2):1172–1175CrossRef
51.
Zurück zum Zitat Doeff MM, Ma YP et al (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140:L169–L170CrossRef Doeff MM, Ma YP et al (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140:L169–L170CrossRef
52.
Zurück zum Zitat Thomas P, Billaud D (2000) Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties. Electrochim Acta 46:39–47CrossRef Thomas P, Billaud D (2000) Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties. Electrochim Acta 46:39–47CrossRef
53.
Zurück zum Zitat Alcantara R, Jimenez-Mateos JM et al (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRef Alcantara R, Jimenez-Mateos JM et al (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRef
54.
Zurück zum Zitat Thomas P, Ghanbaja J et al (1999) Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim Acta 45:423–430CrossRef Thomas P, Ghanbaja J et al (1999) Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim Acta 45:423–430CrossRef
55.
Zurück zum Zitat Thomas P, Billaud D (2001) Sodium electrochemical insertion mechanisms in various carbon fibres. Electrochim Acta 46:3359–3366CrossRef Thomas P, Billaud D (2001) Sodium electrochemical insertion mechanisms in various carbon fibres. Electrochim Acta 46:3359–3366CrossRef
56.
Zurück zum Zitat Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef
57.
Zurück zum Zitat Alcantara R, Lavela P et al (2005) Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett 8:A222–A225CrossRef Alcantara R, Lavela P et al (2005) Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett 8:A222–A225CrossRef
58.
Zurück zum Zitat Cao Y, Xiao L et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao Y, Xiao L et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
59.
Zurück zum Zitat Komaba S, Murata W et al (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef Komaba S, Murata W et al (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef
60.
Zurück zum Zitat Stevens DA, Dahn JR (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147:4428–4431CrossRef Stevens DA, Dahn JR (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147:4428–4431CrossRef
61.
Zurück zum Zitat Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811CrossRef Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811CrossRef
62.
Zurück zum Zitat Xiao L, Cao Y et al (2012) High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun 48:3321–3323CrossRef Xiao L, Cao Y et al (2012) High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun 48:3321–3323CrossRef
63.
Zurück zum Zitat Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011–A1014CrossRef Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011–A1014CrossRef
64.
Zurück zum Zitat Jow TR, Shacklette LW et al (1987) The role of conductive polymers in alkali-metal secondary electrodes. J Electrochem Soc 134:1730–1733CrossRef Jow TR, Shacklette LW et al (1987) The role of conductive polymers in alkali-metal secondary electrodes. J Electrochem Soc 134:1730–1733CrossRef
65.
Zurück zum Zitat Xu Y, Zhu Y et al (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133CrossRef Xu Y, Zhu Y et al (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133CrossRef
66.
Zurück zum Zitat Komaba S, Matsuura Y et al (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef Komaba S, Matsuura Y et al (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef
67.
Zurück zum Zitat Qian J, Chen Y et al (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072CrossRef Qian J, Chen Y et al (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072CrossRef
68.
Zurück zum Zitat Wu L, Pei F et al (2013) SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochim Acta 87:41–45CrossRef Wu L, Pei F et al (2013) SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochim Acta 87:41–45CrossRef
69.
Zurück zum Zitat Chadwick AV, Savin SLP et al (2007) Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo2O4: X-ray absorption spectroscopic study. J Phys Chem C 111:4636–4642CrossRef Chadwick AV, Savin SLP et al (2007) Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo2O4: X-ray absorption spectroscopic study. J Phys Chem C 111:4636–4642CrossRef
70.
Zurück zum Zitat Alcantara R, Jaraba M et al (2002) NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847–2848CrossRef Alcantara R, Jaraba M et al (2002) NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847–2848CrossRef
71.
Zurück zum Zitat Kuroda Y, Kobayashi E et al (2010) Electrochemical properties of spinel-type oxide anodes in sodium-ion battery. In: 218th ECS meeting abstract #389 Kuroda Y, Kobayashi E et al (2010) Electrochemical properties of spinel-type oxide anodes in sodium-ion battery. In: 218th ECS meeting abstract #389
72.
Zurück zum Zitat Nishijima M, Gocheva ID et al (2009) Cathode properties of metal trifluorides in Li and Na secondary batteries. J Power Sources 190:558–562CrossRef Nishijima M, Gocheva ID et al (2009) Cathode properties of metal trifluorides in Li and Na secondary batteries. J Power Sources 190:558–562CrossRef
73.
Zurück zum Zitat Kim TB, Choi JW et al (2007) Electrochemical properties of sodium/pyrite battery at room temperature. J Power Sources 174:1275–1278CrossRef Kim TB, Choi JW et al (2007) Electrochemical properties of sodium/pyrite battery at room temperature. J Power Sources 174:1275–1278CrossRef
74.
Zurück zum Zitat Xiong H, Slater MD et al (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem C 2:2560–2565 Xiong H, Slater MD et al (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem C 2:2560–2565
75.
Zurück zum Zitat Senguttuvan P, Rousse G et al (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111CrossRef Senguttuvan P, Rousse G et al (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111CrossRef
76.
Zurück zum Zitat Wang W, Yu CJ et al (2013) Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries. RSC Adv 3:1041–1044CrossRef Wang W, Yu CJ et al (2013) Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries. RSC Adv 3:1041–1044CrossRef
77.
Zurück zum Zitat Andersson S, Wadsley AD (1961) The crystal structure of Na2Ti3O7. Acta Crystallogr A 14:1245–1249CrossRef Andersson S, Wadsley AD (1961) The crystal structure of Na2Ti3O7. Acta Crystallogr A 14:1245–1249CrossRef
Metadaten
Titel
Cathode and Anode Materials for Na-Ion Battery
verfasst von
Lifen Xao
Yuliang Cao
Jun Liu
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6473-9_14