Skip to main content
Erschienen in: Journal of Electronic Materials 3/2021

11.01.2021 | Original Research Article

Cation Substitution of Copper by Silver in the Earth-Abundant Compound Cu2ZnSnS4: Comparative Study of Structural, Morphological, and Optical Properties

verfasst von: G. Bousselmi, Naoufel Khemiri, S. Ahmadi, A. Cantarero, M. Kanzari

Erschienen in: Journal of Electronic Materials | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quaternary compound Cu2ZnSnS4 (CZTS) is widely recognized as a promising candidate for use as an absorber layer for photovoltaic applications. However, its efficiency is limited by the high density of antisite defects that shorten the performance of CZTS-based solar cells. Cation substitution of copper by other elements has been proposed as a potential solution in order to control and eliminate the cation disorder within the kesterite structure. In this work, Ag2ZnSnS4 (AZTS) and Cu2ZnSnS4 (CZTS) powders were successfully synthesized by solid state reaction. XRD and Raman measurements were performed to study the crystallographic structures and their lattice vibration spectrum. The results confirmed the presence of the pure phase of CZTS and the stannite phase of AZTS with an occurrence of the secondary phase Ag8SnS6. Morphological properties and the composition analysis of synthesized powders were analyzed by scanning electron microscopy and energy dispersive x-ray analysis. A significant change is noticed in the band gap energy value established by the diffuse reflectance spectroscopy from 1.44 eV for CZTS to 2.55 eV for AZTS. Lastly, measurements with the hot probe method indicate the p-type conductivity of CZTS and the n-type conductivity for AZTS as predicted by theoretical studies. These results highlight that the substitution of silver for copper in CZTS leads to significant changes in the properties of CZTS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovoltaics Res. Appl., 2013, 21, p 827.CrossRef M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovoltaics Res. Appl., 2013, 21, p 827.CrossRef
2.
Zurück zum Zitat A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, and A.N. Tiwari, Nature Mater, 2011, 10, p 857.CrossRef A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, and A.N. Tiwari, Nature Mater, 2011, 10, p 857.CrossRef
3.
Zurück zum Zitat I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells, 2012, 101, p 154.CrossRef I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells, 2012, 101, p 154.CrossRef
4.
Zurück zum Zitat H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films, 2009, 517, p 2455.CrossRef H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films, 2009, 517, p 2455.CrossRef
5.
Zurück zum Zitat M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovoltaics Res. Appl., 2019, 27, p 3.CrossRef M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovoltaics Res. Appl., 2019, 27, p 3.CrossRef
6.
Zurück zum Zitat Y.-C. Wang, T.-T. Wu, and Y.-L. Chueh, Mater. Chem. Phys., 2019, 234, p 329.CrossRef Y.-C. Wang, T.-T. Wu, and Y.-L. Chueh, Mater. Chem. Phys., 2019, 234, p 329.CrossRef
7.
Zurück zum Zitat K. Sardashti, R. Haight, T. Gokmen, W. Wang, L.-Y. Chang, D.B. Mitzi, and A.C. Kummel, Adv. Energy Mater., 2015, 5, p 1402180.CrossRef K. Sardashti, R. Haight, T. Gokmen, W. Wang, L.-Y. Chang, D.B. Mitzi, and A.C. Kummel, Adv. Energy Mater., 2015, 5, p 1402180.CrossRef
8.
Zurück zum Zitat T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi, Appl. Phys. Lett., 2013, 103, p 103506.CrossRef T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi, Appl. Phys. Lett., 2013, 103, p 103506.CrossRef
9.
Zurück zum Zitat S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, Adv. Mater., 2013, 25, p 1522.CrossRef S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, Adv. Mater., 2013, 25, p 1522.CrossRef
10.
Zurück zum Zitat R. Touati, M.B. Rabeh, and M. Kanzari, Energy Procedia, 2014, 44, p 44.CrossRef R. Touati, M.B. Rabeh, and M. Kanzari, Energy Procedia, 2014, 44, p 44.CrossRef
11.
Zurück zum Zitat S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett., 2010, 96, p 021902.CrossRef S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett., 2010, 96, p 021902.CrossRef
12.
Zurück zum Zitat T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, and B. Shin, MRS Commun., 2014, 4, p 159.CrossRef T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, and B. Shin, MRS Commun., 2014, 4, p 159.CrossRef
13.
Zurück zum Zitat S. Schorr, S. Schorr, Sol. Energy Mater. Sol. Cells, 2011, 95, p 1482.CrossRef S. Schorr, S. Schorr, Sol. Energy Mater. Sol. Cells, 2011, 95, p 1482.CrossRef
14.
Zurück zum Zitat Z. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, and S.-H. Wei, Adv. Func. Mater., 2015, 25, p 6733.CrossRef Z. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, and S.-H. Wei, Adv. Func. Mater., 2015, 25, p 6733.CrossRef
15.
Zurück zum Zitat J. Li, D. Wang, X. Li, Y. Zeng, and Y. Zhang, Adv. Sci., 2018, 5, p 1700744.CrossRef J. Li, D. Wang, X. Li, Y. Zeng, and Y. Zhang, Adv. Sci., 2018, 5, p 1700744.CrossRef
16.
Zurück zum Zitat T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, and R. Haight, Adv. Energy Mater., 2016, 6, p 1502468.CrossRef T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, and R. Haight, Adv. Energy Mater., 2016, 6, p 1502468.CrossRef
17.
Zurück zum Zitat X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, X. Qin, X. Zhang, and Y. Dai, ChemPhotoChem, 2018, 2, p 811.CrossRef X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, X. Qin, X. Zhang, and Y. Dai, ChemPhotoChem, 2018, 2, p 811.CrossRef
18.
Zurück zum Zitat Y. Zhao, X. Han, B. Xu, W. Li, J. Li, J. Li, M. Wang, C. Dong, P. Ju, and J. Li, IEEE J. Photovoltaics, 2017, 7, p 874.CrossRef Y. Zhao, X. Han, B. Xu, W. Li, J. Li, J. Li, M. Wang, C. Dong, P. Ju, and J. Li, IEEE J. Photovoltaics, 2017, 7, p 874.CrossRef
19.
Zurück zum Zitat W. Li, X. Liu, H. Cui, S. Huang, and X. Hao, J. Alloys Compd., 2015, 625, p 277.CrossRef W. Li, X. Liu, H. Cui, S. Huang, and X. Hao, J. Alloys Compd., 2015, 625, p 277.CrossRef
20.
Zurück zum Zitat H. Cui, X. Liu, F. Liu, X. Hao, N. Song, and C. Yan, Appl. Phys. Lett., 2014, 104, p 041115.CrossRef H. Cui, X. Liu, F. Liu, X. Hao, N. Song, and C. Yan, Appl. Phys. Lett., 2014, 104, p 041115.CrossRef
21.
Zurück zum Zitat X. Hu, S. Pritchett-Montavon, C. Handwerker, and R. Agrawal, J. Mater. Res., 2019, 34, p 3810.CrossRef X. Hu, S. Pritchett-Montavon, C. Handwerker, and R. Agrawal, J. Mater. Res., 2019, 34, p 3810.CrossRef
22.
Zurück zum Zitat I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater., 2010, 22, p 1402.CrossRef I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater., 2010, 22, p 1402.CrossRef
23.
Zurück zum Zitat K. Li, B. Chai, T. Peng, J. Mao, and L. Zan, RSC Adv., 2012, 3, p 253.CrossRef K. Li, B. Chai, T. Peng, J. Mao, and L. Zan, RSC Adv., 2012, 3, p 253.CrossRef
24.
Zurück zum Zitat S. Ikeda, T. Nakamura, T. Harada, and M. Matsumura, Phys. Chem. Chem. Phys., 2010, 12, p 13943.CrossRef S. Ikeda, T. Nakamura, T. Harada, and M. Matsumura, Phys. Chem. Chem. Phys., 2010, 12, p 13943.CrossRef
25.
26.
Zurück zum Zitat T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2012, 41, p 1009.CrossRef T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2012, 41, p 1009.CrossRef
27.
Zurück zum Zitat S. Yang, S. Wang, H. Liao, X. Xu, Z. Tang, X. Li, T. Wang, X. Li, and D. Liu, J. Mater. Sci. Mater. Electron., 2019, 30, p 11171.CrossRef S. Yang, S. Wang, H. Liao, X. Xu, Z. Tang, X. Li, T. Wang, X. Li, and D. Liu, J. Mater. Sci. Mater. Electron., 2019, 30, p 11171.CrossRef
28.
Zurück zum Zitat H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Sol. Energy Mater. Sol. Cells, 2018, 178, p 146.CrossRef H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Sol. Energy Mater. Sol. Cells, 2018, 178, p 146.CrossRef
29.
Zurück zum Zitat H. Dan, J. Zhi-Ping, L. Chang-Sheng, Y. Chun-Mei, and G. Jin, Acta. Phys. Sin.-Ch. Ed., 2014, 63, p 247101. H. Dan, J. Zhi-Ping, L. Chang-Sheng, Y. Chun-Mei, and G. Jin, Acta. Phys. Sin.-Ch. Ed., 2014, 63, p 247101.
30.
31.
Zurück zum Zitat P. Fernandes, P. Salomé, and A.F. da Cunha, J. Alloys Compd., 2011, 509, p 7600.CrossRef P. Fernandes, P. Salomé, and A.F. da Cunha, J. Alloys Compd., 2011, 509, p 7600.CrossRef
32.
Zurück zum Zitat M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, and V. Izquierdo-Roca, Inorg. Chem., 2017, 56, p 3467.CrossRef M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, and V. Izquierdo-Roca, Inorg. Chem., 2017, 56, p 3467.CrossRef
33.
Zurück zum Zitat C. Ma, H. Guo, K. Zhang, N. Yuan, and J. Ding, Mater. Lett., 2017, 186, p 390.CrossRef C. Ma, H. Guo, K. Zhang, N. Yuan, and J. Ding, Mater. Lett., 2017, 186, p 390.CrossRef
34.
Zurück zum Zitat K.-W. Cheng, W.-T. Tsai, and Y.-H. Wu, J. Power Sources, 2016, 317, p 81.CrossRef K.-W. Cheng, W.-T. Tsai, and Y.-H. Wu, J. Power Sources, 2016, 317, p 81.CrossRef
35.
Zurück zum Zitat O.A. Yassin, A.A. Abdelaziz, and A.Y. Jaber, Mater. Sci. Semicond. Process., 2015, 38, p 81.CrossRef O.A. Yassin, A.A. Abdelaziz, and A.Y. Jaber, Mater. Sci. Semicond. Process., 2015, 38, p 81.CrossRef
36.
Zurück zum Zitat S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, and J.Y. Lee, Solar Energy Mater. Solar Cells, 2011, 95, p 3202.CrossRef S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, and J.Y. Lee, Solar Energy Mater. Solar Cells, 2011, 95, p 3202.CrossRef
37.
Zurück zum Zitat S. Abdullahi, S. Güner, Y. Koseoglu, I. Musa, B. Adamu, and M. Abdulhamid, J. Niger. Assoc. Math. Phys., 2016, 35, p 241. S. Abdullahi, S. Güner, Y. Koseoglu, I. Musa, B. Adamu, and M. Abdulhamid, J. Niger. Assoc. Math. Phys., 2016, 35, p 241.
38.
Zurück zum Zitat V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater., 2016, 28, p 5406.CrossRef V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater., 2016, 28, p 5406.CrossRef
39.
Zurück zum Zitat P. Makuła, M. Pacia, and W. Macyk, J. Phys. Chem. Lett., 2018, 9, p 6814.CrossRef P. Makuła, M. Pacia, and W. Macyk, J. Phys. Chem. Lett., 2018, 9, p 6814.CrossRef
40.
Zurück zum Zitat V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. Özgür, and I.U. Arachchige, Nanoscale, 2018, 10, p 20296.CrossRef V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. Özgür, and I.U. Arachchige, Nanoscale, 2018, 10, p 20296.CrossRef
41.
Zurück zum Zitat F. Yang, R. Ma, W. Zhao, X. Zhang, and X. Li, J. Alloys Compd., 2016, 689, p 849.CrossRef F. Yang, R. Ma, W. Zhao, X. Zhang, and X. Li, J. Alloys Compd., 2016, 689, p 849.CrossRef
42.
Zurück zum Zitat S.M. Camara, L. Wang, and X. Zhang, Nanotechnology, 2013, 24, p 495401.CrossRef S.M. Camara, L. Wang, and X. Zhang, Nanotechnology, 2013, 24, p 495401.CrossRef
43.
Zurück zum Zitat M.Z. Ansari, and N. Khare, Mater. Sci. Semicond. Process., 2017, 63, p 220.CrossRef M.Z. Ansari, and N. Khare, Mater. Sci. Semicond. Process., 2017, 63, p 220.CrossRef
44.
Zurück zum Zitat L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, and S. Dai, Sci. China Mater., 2018, 61, p 1549.CrossRef L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, and S. Dai, Sci. China Mater., 2018, 61, p 1549.CrossRef
45.
Zurück zum Zitat P. Boon-on, B.A. Aragaw, C.-Y. Lee, J.-B. Shi, and M.-W. Lee, RSC Adv., 2018, 8, p 39470.CrossRef P. Boon-on, B.A. Aragaw, C.-Y. Lee, J.-B. Shi, and M.-W. Lee, RSC Adv., 2018, 8, p 39470.CrossRef
46.
Zurück zum Zitat X.H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Solar Energy Mater. Solar Cells, 2018, 178, p 146.CrossRef X.H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Solar Energy Mater. Solar Cells, 2018, 178, p 146.CrossRef
47.
48.
49.
Zurück zum Zitat A. Khare, B. Himmetoglu, M. Johnson, D. Norris, M. Cococcioni, and E. Aydil, J. Appl. Phys., 2012, 111, p 083707.CrossRef A. Khare, B. Himmetoglu, M. Johnson, D. Norris, M. Cococcioni, and E. Aydil, J. Appl. Phys., 2012, 111, p 083707.CrossRef
Metadaten
Titel
Cation Substitution of Copper by Silver in the Earth-Abundant Compound Cu2ZnSnS4: Comparative Study of Structural, Morphological, and Optical Properties
verfasst von
G. Bousselmi
Naoufel Khemiri
S. Ahmadi
A. Cantarero
M. Kanzari
Publikationsdatum
11.01.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 3/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08711-9

Weitere Artikel der Ausgabe 3/2021

Journal of Electronic Materials 3/2021 Zur Ausgabe

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

On the 3-D Shape of Interlaced Regions in Sn-3Ag-0.5Cu Solder Balls

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Whisker Growth in Sn Coatings: A Review of Current Status and Future Prospects

Neuer Inhalt