Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2008

01.03.2008 | Research Article

Causal networks in simulated neural systems

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neurons engage in causal interactions with one another and with the surrounding body and environment. Neural systems can therefore be analyzed in terms of causal networks, without assumptions about information processing, neural coding, and the like. Here, we review a series of studies analyzing causal networks in simulated neural systems using a combination of Granger causality analysis and graph theory. Analysis of a simple target-fixation model shows that causal networks provide intuitive representations of neural dynamics during behavior which can be validated by lesion experiments. Extension of the approach to a neurorobotic model of the hippocampus and surrounding areas identifies shifting causal pathways during learning of a spatial navigation task. Analysis of causal interactions at the population level in the model shows that behavioral learning is accompanied by selection of specific causal pathways—“causal cores”—from among large and variable repertoires of neuronal interactions. Finally, we argue that a causal network perspective may be useful for characterizing the complex neural dynamics underlying consciousness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Many applications in neurophysiology make use of a frequency-domain version of Granger causality (Geweke 1982; Kaminski et al. 2001). However, because in this paper we analyze simulation models without oscillatory dynamics, we remain in the (simpler) time domain.
 
2
The fitness function was F = t fix  + 0.25(35 − d̄), where t fix denotes the proportion of time for which the target was fixated and d̄ the mean offset between H and G (the environment was a toroidal square plane with side length 100).
 
3
The analyzed time series varied in length from 450 to 4,994 time-steps. Robustness to different lengths was assessed by reanalyzing causal interactions after dividing each time series into two parts; results were qualitatively identical (see (Seth and Edelman 2007) for details).
 
4
Recursive complexity refers to the balance between differentiation and integration across different levels of description. The phenomenal structure of consciousness appears to be recursive inasmuch as individual features of conscious scenes are themselves Gestalts which share organizational properties with the conscious scene as a whole.
 
5
Because Granger causality is based on linear regression it assumes a continuous signal, but neural systems at the level of spikes are discontinuous. A straightforward adaptation of the technique is to convolve spikes with a continuous function (e.g., a half-Gaussian) in order to generate a continuous signal. A more principled but more complex alternative is to substitute linear regression modelling with a point-process prediction algorithm (Okatan et al. 2005; Nykamp 2007).
 
6
J. Feng, personal communication.
 
Literatur
Zurück zum Zitat Ancona N, Marinazzo D, Stramaglia S (2004) Radial basis function approaches to nonlinear granger causality of time series. Phys Rev E 70:056221CrossRef Ancona N, Marinazzo D, Stramaglia S (2004) Radial basis function approaches to nonlinear granger causality of time series. Phys Rev E 70:056221CrossRef
Zurück zum Zitat Bernasconi C, Konig P (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol Cybern 81:199–210PubMedCrossRef Bernasconi C, Konig P (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol Cybern 81:199–210PubMedCrossRef
Zurück zum Zitat Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificit and binocular interaction in the visual cortex. J Neurosci 2(1):32–48PubMed Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificit and binocular interaction in the visual cortex. J Neurosci 2(1):32–48PubMed
Zurück zum Zitat Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101(26):9849–9854PubMedCrossRef Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101(26):9849–9854PubMedCrossRef
Zurück zum Zitat Chen Y, Rangarajan G, Feng J, Ding M (2004) Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 324:26–35CrossRef Chen Y, Rangarajan G, Feng J, Ding M (2004) Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 324:26–35CrossRef
Zurück zum Zitat Churchland P, Sejnowski T (1994) The computational brain. MIT Press, Cambridge, MA Churchland P, Sejnowski T (1994) The computational brain. MIT Press, Cambridge, MA
Zurück zum Zitat Clark A (1997) Being there: putting brain, body, and world together again. MIT Press, Cambridge, MA Clark A (1997) Being there: putting brain, body, and world together again. MIT Press, Cambridge, MA
Zurück zum Zitat deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci 23:613–647PubMedCrossRef deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci 23:613–647PubMedCrossRef
Zurück zum Zitat Ding M, Bressler S, Yang W, Liang H (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data prepocessing, model validation, and variability assessment. Biol Cybern 83:35–45PubMedCrossRef Ding M, Bressler S, Yang W, Liang H (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data prepocessing, model validation, and variability assessment. Biol Cybern 83:35–45PubMedCrossRef
Zurück zum Zitat Ding M, Chen Y, Bressler S (2006) Granger causality: basic theory and application to neuroscience. In: Schelter S, Winterhalder M, Timmer J (eds) Handbook of time series analysis. Wiley, Wienheim, pp 438–460 Ding M, Chen Y, Bressler S (2006) Granger causality: basic theory and application to neuroscience. In: Schelter S, Winterhalder M, Timmer J (eds) Handbook of time series analysis. Wiley, Wienheim, pp 438–460
Zurück zum Zitat Dityatev AE, Bolshakov VY (2005) Amygdala, long-term potentiation, and fear conditioning. Neuroscientist 11:75–88PubMedCrossRef Dityatev AE, Bolshakov VY (2005) Amygdala, long-term potentiation, and fear conditioning. Neuroscientist 11:75–88PubMedCrossRef
Zurück zum Zitat Drew PJ, Abbott LF (2006) Extending the effects of spike-timing-dependent plasticity to behavioral timescales. Proc Natl Acad Sci USA 103(23):8876–8881PubMedCrossRef Drew PJ, Abbott LF (2006) Extending the effects of spike-timing-dependent plasticity to behavioral timescales. Proc Natl Acad Sci USA 103(23):8876–8881PubMedCrossRef
Zurück zum Zitat Edelman GM (1987) Neural Darwinism. Basic Books, New York Edelman GM (1987) Neural Darwinism. Basic Books, New York
Zurück zum Zitat Edelman GM (1993) Selection and reentrant signaling in higher brain function. Neuron 10:115–125PubMedCrossRef Edelman GM (1993) Selection and reentrant signaling in higher brain function. Neuron 10:115–125PubMedCrossRef
Zurück zum Zitat Edelman GM (2003) Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci USA 100(9):5520–5524PubMedCrossRef Edelman GM (2003) Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci USA 100(9):5520–5524PubMedCrossRef
Zurück zum Zitat Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New York Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New York
Zurück zum Zitat Eichler M (2005) A graphical approach for evaluating effective connectivity in neural systems. Philos Trans R Soc B 360:953–967CrossRef Eichler M (2005) A graphical approach for evaluating effective connectivity in neural systems. Philos Trans R Soc B 360:953–967CrossRef
Zurück zum Zitat Friewald WA, Valdes P, Bosch J, Biscay R, Jimenez JC, Rodriguez LM, Rodriguez V, Kreiter AK, Singer W (1999) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosci Methods 94:105–119CrossRef Friewald WA, Valdes P, Bosch J, Biscay R, Jimenez JC, Rodriguez LM, Rodriguez V, Kreiter AK, Singer W (1999) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosci Methods 94:105–119CrossRef
Zurück zum Zitat Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78CrossRef Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78CrossRef
Zurück zum Zitat Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836PubMedCrossRef Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836PubMedCrossRef
Zurück zum Zitat Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77:304–313CrossRef Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77:304–313CrossRef
Zurück zum Zitat Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRef Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRef
Zurück zum Zitat Grossberg S (1999) The link between brain learning, attention, and consciousness. Conscious Cogn 8:1–44PubMedCrossRef Grossberg S (1999) The link between brain learning, attention, and consciousness. Conscious Cogn 8:1–44PubMedCrossRef
Zurück zum Zitat Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, NJ Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, NJ
Zurück zum Zitat Hesse W, Möller E, Arnold M, Schack B (2003) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosc Methods 124:27–44CrossRef Hesse W, Möller E, Arnold M, Schack B (2003) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosc Methods 124:27–44CrossRef
Zurück zum Zitat Horwitz B, Warner B, Fitzer J, Tagamets M, Husain F, Long T (2005) Investigating the neural basis for functional and effective connectivity. Application to fmri. Philos Trans R Soc Lond B Biol Sci 360:1093–1108PubMedCrossRef Horwitz B, Warner B, Fitzer J, Tagamets M, Husain F, Long T (2005) Investigating the neural basis for functional and effective connectivity. Application to fmri. Philos Trans R Soc Lond B Biol Sci 360:1093–1108PubMedCrossRef
Zurück zum Zitat James W (1904) Does consciousness exist? J Philos Pyschol Sci Methods 1:477–491CrossRef James W (1904) Does consciousness exist? J Philos Pyschol Sci Methods 1:477–491CrossRef
Zurück zum Zitat Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145–157PubMedCrossRef Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145–157PubMedCrossRef
Zurück zum Zitat Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Ruppin E (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput 16:1887–1915PubMedCrossRef Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Ruppin E (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput 16:1887–1915PubMedCrossRef
Zurück zum Zitat Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459PubMed Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459PubMed
Zurück zum Zitat Knoblauch A, Palm G (2005) What is signal and what is noise in the brain? Biosystems 79(1–3):83–90PubMedCrossRef Knoblauch A, Palm G (2005) What is signal and what is noise in the brain? Biosystems 79(1–3):83–90PubMedCrossRef
Zurück zum Zitat Konkle AT, Bielajew C (2004) Tracing the neuroanatomical profiles of reward pathways with markers of neuronal activation. Rev Neurosci 15(6):383–414PubMed Konkle AT, Bielajew C (2004) Tracing the neuroanatomical profiles of reward pathways with markers of neuronal activation. Rev Neurosci 15(6):383–414PubMed
Zurück zum Zitat Krichmar JL, Edelman GM (2002) Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cereb Cortex 12(8):818–830PubMedCrossRef Krichmar JL, Edelman GM (2002) Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cereb Cortex 12(8):818–830PubMedCrossRef
Zurück zum Zitat Krichmar JL, Nitz DA, Gally JA, Edelman GM (2005a) Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proc Natl Acad Sci USA 102(6):2111–2116PubMedCrossRef Krichmar JL, Nitz DA, Gally JA, Edelman GM (2005a) Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proc Natl Acad Sci USA 102(6):2111–2116PubMedCrossRef
Zurück zum Zitat Krichmar JL, Seth AK, Nitz DA, Fleischer JG, Edelman GM (2005b) Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics 3(3):197–222PubMedCrossRef Krichmar JL, Seth AK, Nitz DA, Fleischer JG, Edelman GM (2005b) Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics 3(3):197–222PubMedCrossRef
Zurück zum Zitat Lavenex P, Amaral D (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430PubMedCrossRef Lavenex P, Amaral D (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430PubMedCrossRef
Zurück zum Zitat Liang H, Ding M, Nakamura R, Bressler SL (2000) Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport 11(13):2875–2880PubMedCrossRef Liang H, Ding M, Nakamura R, Bressler SL (2000) Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport 11(13):2875–2880PubMedCrossRef
Zurück zum Zitat Lin L, Osan R, Tsien J (2006) Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci 29(1):48–57PubMedCrossRef Lin L, Osan R, Tsien J (2006) Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci 29(1):48–57PubMedCrossRef
Zurück zum Zitat Lungarella M, Ishiguro K, Kuniyoshi Y, Otsu N (2007) Methods for quantifying the causal structure of bivariate time series. Int J Bifurcat Chaos 17(3):903–921CrossRef Lungarella M, Ishiguro K, Kuniyoshi Y, Otsu N (2007) Methods for quantifying the causal structure of bivariate time series. Int J Bifurcat Chaos 17(3):903–921CrossRef
Zurück zum Zitat Makarov V, Panetsos F, de Feo O (2005) A method for determining neural connectivity and inferring the underlying neural dynamics using extracellular spike recordings. J Neurosci Methods 144:265–279PubMed Makarov V, Panetsos F, de Feo O (2005) A method for determining neural connectivity and inferring the underlying neural dynamics using extracellular spike recordings. J Neurosci Methods 144:265–279PubMed
Zurück zum Zitat McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22CrossRef McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22CrossRef
Zurück zum Zitat Morris RGM (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRef Morris RGM (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRef
Zurück zum Zitat Nykamp D (2007) A mathematical framework for inferring connectivity in probabilistic neuronal networks. Math Biosci 205(2):204–251PubMedCrossRef Nykamp D (2007) A mathematical framework for inferring connectivity in probabilistic neuronal networks. Math Biosci 205(2):204–251PubMedCrossRef
Zurück zum Zitat Okatan M, Wilson MA, Brown EN (2005) Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 17(9):1927–1961PubMedCrossRef Okatan M, Wilson MA, Brown EN (2005) Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 17(9):1927–1961PubMedCrossRef
Zurück zum Zitat Pearl J (1999) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge, UK Pearl J (1999) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge, UK
Zurück zum Zitat Raffi M, Siegel RM (2005) Functional architecture of spatial attention in the parietal cortex of the behaving monkey. J Neurosci 25:5171–5186PubMedCrossRef Raffi M, Siegel RM (2005) Functional architecture of spatial attention in the parietal cortex of the behaving monkey. J Neurosci 25:5171–5186PubMedCrossRef
Zurück zum Zitat Rees G, Kreiman G, Koch C (2002) Neural correlates of consciousness in humans. Nat Rev Neurosci 3(4):261–270PubMedCrossRef Rees G, Kreiman G, Koch C (2002) Neural correlates of consciousness in humans. Nat Rev Neurosci 3(4):261–270PubMedCrossRef
Zurück zum Zitat Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using granger causality and fmri. Neuroimage 25(1):230–242PubMedCrossRef Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using granger causality and fmri. Neuroimage 25(1):230–242PubMedCrossRef
Zurück zum Zitat Schwartz G (1978) Estimating the dimension of a model. Ann Stat 5(2):461–464CrossRef Schwartz G (1978) Estimating the dimension of a model. Ann Stat 5(2):461–464CrossRef
Zurück zum Zitat Seth AK (2005) Causal connectivity of evolved neural networks during behavior. Network Comput Neural Syst 16:35–54CrossRef Seth AK (2005) Causal connectivity of evolved neural networks during behavior. Network Comput Neural Syst 16:35–54CrossRef
Zurück zum Zitat Seth AK (2007) Granger causality. Scholarpedia, page 15501 Seth AK (2007) Granger causality. Scholarpedia, page 15501
Zurück zum Zitat Seth AK (2007) Granger causality analysis of MEG signals during a working memory task. Abst Soc Neurosci Seth AK (2007) Granger causality analysis of MEG signals during a working memory task. Abst Soc Neurosci
Zurück zum Zitat Seth AK, Baars BJ, Edelman DB (2005) Criteria for consciousness in humans and other mammals. Conscious Cogn 14(1):119–139PubMedCrossRef Seth AK, Baars BJ, Edelman DB (2005) Criteria for consciousness in humans and other mammals. Conscious Cogn 14(1):119–139PubMedCrossRef
Zurück zum Zitat Seth AK, Edelman GM (2004) Environment and behavior influence the complexity of evolved neural networks. Adapt Behav 12:5–21CrossRef Seth AK, Edelman GM (2004) Environment and behavior influence the complexity of evolved neural networks. Adapt Behav 12:5–21CrossRef
Zurück zum Zitat Seth AK, Edelman GM (2007) Distinguishing causal interactions in neural populations. Neural Comput 19:910–933PubMedCrossRef Seth AK, Edelman GM (2007) Distinguishing causal interactions in neural populations. Neural Comput 19:910–933PubMedCrossRef
Zurück zum Zitat Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci USA 103(28):10799–10804PubMedCrossRef Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci USA 103(28):10799–10804PubMedCrossRef
Zurück zum Zitat Sherman M, Guillery R (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc B Biol Sci 357:1695–1708CrossRef Sherman M, Guillery R (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc B Biol Sci 357:1695–1708CrossRef
Zurück zum Zitat Smith V, Yu J, Smulders T, Hartemink A, Jarvis E (2006) Computational inference of neural information flow networks. PLoS Comput Biol 2(11):e161PubMedCrossRef Smith V, Yu J, Smulders T, Hartemink A, Jarvis E (2006) Computational inference of neural information flow networks. PLoS Comput Biol 2(11):e161PubMedCrossRef
Zurück zum Zitat Sporns O, Lungarella M (2006) Information flow in sensorimotor networks. PLoS Comput Biol 2(10):e144PubMedCrossRef Sporns O, Lungarella M (2006) Information flow in sensorimotor networks. PLoS Comput Biol 2(10):e144PubMedCrossRef
Zurück zum Zitat Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42PubMedCrossRef Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42PubMedCrossRef
Zurück zum Zitat Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6(5):389–397PubMedCrossRef Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6(5):389–397PubMedCrossRef
Zurück zum Zitat Sutton R, Barto A (1998) Reinforcement learning. MIT Press, Cambridge, MA Sutton R, Barto A (1998) Reinforcement learning. MIT Press, Cambridge, MA
Zurück zum Zitat Timme M (2007) Revealing network connectivity from response dynamics. Phys Rev Lett 98:224101PubMedCrossRef Timme M (2007) Revealing network connectivity from response dynamics. Phys Rev Lett 98:224101PubMedCrossRef
Zurück zum Zitat Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037 Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037
Zurück zum Zitat Valdes-Sosa P, Sanchez-Bornot J, Lage-Castellanos A, Vega-Hernandez M, Bosch-Bayard J, Melie-Garcia L, Canales-Rodriguez E (2005) Estimating brain functional connectivity with sparse multivariate autoregression. Philos Trans R Soc Lond B Biol Sci 360:969–981CrossRef Valdes-Sosa P, Sanchez-Bornot J, Lage-Castellanos A, Vega-Hernandez M, Bosch-Bayard J, Melie-Garcia L, Canales-Rodriguez E (2005) Estimating brain functional connectivity with sparse multivariate autoregression. Philos Trans R Soc Lond B Biol Sci 360:969–981CrossRef
Zurück zum Zitat Zellner A (1971) An introduction to Bayesian inference in econometrics. Wiley, New York Zellner A (1971) An introduction to Bayesian inference in econometrics. Wiley, New York
Metadaten
Titel
Causal networks in simulated neural systems
Publikationsdatum
01.03.2008
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2008
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-007-9031-z

Weitere Artikel der Ausgabe 1/2008

Cognitive Neurodynamics 1/2008 Zur Ausgabe

Neuer Inhalt