Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

10.04.2022

CBR: An Effective Clustering Approach for Time Series Events

verfasst von: Junlu Wang, Ruiqiang Ma, Linjiao Xia, Baoyan Song

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

As technology advances, a large number of time series data have emerged in all walks of life. Clustering is a key technique for analysing time series data. However, most of the existing clustering methods calculate the distance of a single discrete data point, but cannot be applied to continuous time-series data with structural distortion (e.g., expansion, contraction, and drift) and noise (e.g., pseudo-event), resulting in low clustering accuracy. In this paper, a novel time series event clustering approach called CBR(Clustering Based on Representative sequences) is proposed. We first introduce a cross-correlation method to measure the distance between sequences with structural distortion, and propose an r-nearest neighbor evaluation system for sequences to construct candidate sets of R-Seqs(Representative sequences) and eliminate pseudo-event interference. Secondly, we formulate composite selection approaches for R-Seqs based on combinatorial optimization and diversifying top-k query to rapidly derive the R-Seqs optimal solution from the candidate sets. Finally, relying on the dynamically constructed distance matrix of R-Seqs and dataset, a matrix clustering method based on K-means is proposed to achieve an efficient division of event classes. Experimental results demonstrate that CBR is superior to the existing approaches in clustering accuracy, efficiency and denoising quality, especially the clustering accuracy is improved by more than 30% on average .
Literatur
1.
Zurück zum Zitat Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inf Syst 53:16–38 CrossRef Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inf Syst 53:16–38 CrossRef
2.
Zurück zum Zitat Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa LdF, Rodrigues FA (2019) Clustering algorithms: a comparative approach. PloS One 14(1):e0210236 CrossRef Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa LdF, Rodrigues FA (2019) Clustering algorithms: a comparative approach. PloS One 14(1):e0210236 CrossRef
3.
Zurück zum Zitat Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding W, Lin CT (2017) A review of clustering techniques and developments. Neurocomputing 267:664–681 CrossRef Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding W, Lin CT (2017) A review of clustering techniques and developments. Neurocomputing 267:664–681 CrossRef
4.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J (2009) Unsupervised learning. the elements of statistical learning. Springer, New York CrossRef Hastie T, Tibshirani R, Friedman J (2009) Unsupervised learning. the elements of statistical learning. Springer, New York CrossRef
5.
Zurück zum Zitat Celebi ME, Aydin K (2016) Unsupervised learning algorithms. Springer, New York CrossRef Celebi ME, Aydin K (2016) Unsupervised learning algorithms. Springer, New York CrossRef
6.
Zurück zum Zitat Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3):606–660 MathSciNetCrossRef Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3):606–660 MathSciNetCrossRef
7.
Zurück zum Zitat Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning for time series classification: a review. Data Min Knowl Discov 33(4):917–963 MathSciNetCrossRef Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning for time series classification: a review. Data Min Knowl Discov 33(4):917–963 MathSciNetCrossRef
8.
Zurück zum Zitat Sohail MN, Jiadong R, Uba MM, Irshad M (2019) A comprehensive looks at data mining techniques contributing to medical data growth: a survey of researcher reviews. recent developments in intelligent computing, communication and devices. Springer, New York Sohail MN, Jiadong R, Uba MM, Irshad M (2019) A comprehensive looks at data mining techniques contributing to medical data growth: a survey of researcher reviews. recent developments in intelligent computing, communication and devices. Springer, New York
9.
Zurück zum Zitat Zhao J, Itti L (2018) Shapedtw: shape dynamic time warping. Pattern Recogn 74:171–184 CrossRef Zhao J, Itti L (2018) Shapedtw: shape dynamic time warping. Pattern Recogn 74:171–184 CrossRef
10.
Zurück zum Zitat Gidea M, Goldsmith D, Katz Y, Roldan P, Shmalo Y (2020) Topological recognition of critical transitions in time series of cryptocurrencies. Phys A: Stat Mech Appl pp, 123843 Gidea M, Goldsmith D, Katz Y, Roldan P, Shmalo Y (2020) Topological recognition of critical transitions in time series of cryptocurrencies. Phys A: Stat Mech Appl pp, 123843
11.
Zurück zum Zitat Li D, Tian Y (2018) Survey and experimental study on metric learning methods. Neural Netw 105:447–462 CrossRef Li D, Tian Y (2018) Survey and experimental study on metric learning methods. Neural Netw 105:447–462 CrossRef
12.
Zurück zum Zitat Barnett AH, Magland J, af Klinteberg L (2019) A parallel nonuniform fast fourier transform library based on an “exponential of semicircle’’ kernel. SIAM J Scientif Comput 41(5):C479–C504 MathSciNetCrossRef Barnett AH, Magland J, af Klinteberg L (2019) A parallel nonuniform fast fourier transform library based on an “exponential of semicircle’’ kernel. SIAM J Scientif Comput 41(5):C479–C504 MathSciNetCrossRef
13.
Zurück zum Zitat Bryant A, Cios K (2018) Rnn-dbscan: a density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Trans Knowl Data Eng 30(6):1109–1121 CrossRef Bryant A, Cios K (2018) Rnn-dbscan: a density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Trans Knowl Data Eng 30(6):1109–1121 CrossRef
15.
Zurück zum Zitat Hallac D, Vare S, Boyd S, Leskovec J (2017) Toeplitz inverse covariance-based clustering of multivariate time series data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 215–223 Hallac D, Vare S, Boyd S, Leskovec J (2017) Toeplitz inverse covariance-based clustering of multivariate time series data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 215–223
16.
Zurück zum Zitat Wei LY (2016) A hybrid anfis model based on empirical mode decomposition for stock time series forecasting. Appl Soft Comput 42:368–376 CrossRef Wei LY (2016) A hybrid anfis model based on empirical mode decomposition for stock time series forecasting. Appl Soft Comput 42:368–376 CrossRef
17.
Zurück zum Zitat Nguyen H, Drebenstedt C, Bui XN, Bui DT (2020) Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Nat Resour Res 29(2):691–709 CrossRef Nguyen H, Drebenstedt C, Bui XN, Bui DT (2020) Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Nat Resour Res 29(2):691–709 CrossRef
18.
Zurück zum Zitat Liu Z, Li X, Luo P, Loy CC, Tang X (2017) Deep learning markov random field for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 40(8):1814–1828 CrossRef Liu Z, Li X, Luo P, Loy CC, Tang X (2017) Deep learning markov random field for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 40(8):1814–1828 CrossRef
20.
Zurück zum Zitat Paparrizos J, Gravano L (2017) Fast and accurate time-series clustering. ACM Trans Database Syst(TODS) 42(2):1–49 MathSciNetCrossRef Paparrizos J, Gravano L (2017) Fast and accurate time-series clustering. ACM Trans Database Syst(TODS) 42(2):1–49 MathSciNetCrossRef
21.
Zurück zum Zitat Liu Y, Chen J, Wu S, Liu Z, Chao H (2018) Incremental fuzzy c medoids clustering of time series data using dynamic time warping distance. PloS One 13(5):e0197499 CrossRef Liu Y, Chen J, Wu S, Liu Z, Chao H (2018) Incremental fuzzy c medoids clustering of time series data using dynamic time warping distance. PloS One 13(5):e0197499 CrossRef
22.
Zurück zum Zitat Senin P (2008) Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Honolulu, USA 855(1–23):40 Senin P (2008) Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Honolulu, USA 855(1–23):40
23.
Zurück zum Zitat Zakaria J, Mueen A, Keogh E (2012) Clustering time series using unsupervised-shapelets. In: 2012 IEEE 12th International Conference on Data Mining, IEEE, pp 785–794 Zakaria J, Mueen A, Keogh E (2012) Clustering time series using unsupervised-shapelets. In: 2012 IEEE 12th International Conference on Data Mining, IEEE, pp 785–794
24.
Zurück zum Zitat Rashno E, Minaei-Bidgoli B, Guo Y (2020) An effective clustering method based on data indeterminacy in neutrosophic set domain. Eng Appl Artif Intell 89:103411 CrossRef Rashno E, Minaei-Bidgoli B, Guo Y (2020) An effective clustering method based on data indeterminacy in neutrosophic set domain. Eng Appl Artif Intell 89:103411 CrossRef
25.
Zurück zum Zitat Ali M, Dat LQ, Smarandache F et al (2018) Interval complex neutrosophic set: formulation and applications in decision-making. Int J Fuzzy Syst 20(3):986–999 CrossRef Ali M, Dat LQ, Smarandache F et al (2018) Interval complex neutrosophic set: formulation and applications in decision-making. Int J Fuzzy Syst 20(3):986–999 CrossRef
26.
Zurück zum Zitat Bandara K, Bergmeir C, Smyl S (2020) Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach. Expert Syst Appl 140:112896 CrossRef Bandara K, Bergmeir C, Smyl S (2020) Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach. Expert Syst Appl 140:112896 CrossRef
Metadaten
Titel
CBR: An Effective Clustering Approach for Time Series Events
verfasst von
Junlu Wang
Ruiqiang Ma
Linjiao Xia
Baoyan Song
Publikationsdatum
10.04.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10763-3

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe