Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.08.2019 | Regular Paper | Ausgabe 5/2020

Knowledge and Information Systems 5/2020

CDLFM: cross-domain recommendation for cold-start users via latent feature mapping

Zeitschrift:
Knowledge and Information Systems > Ausgabe 5/2020
Autoren:
Xinghua Wang, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Wenjing Fu, Xiaokang Xu, Xiaoguang Hong
Wichtige Hinweise
This work is an extension of our previous conference paper published in DASFAA 2018.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Collaborative filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting the user preference to items in a single domain, such as the movie domain or the music domain. A major challenge for such models is the data sparsity, and especially, CF cannot make accurate predictions for the cold-start users who have no ratings at all. Although cross-domain collaborative filtering (CDCF) is proposed for effectively transferring knowledge across different domains, it is still difficult for existing CDCF models to tackle the cold-start users in the target domain due to the extreme data sparsity. In this paper, we propose the cross-domain latent feature mapping (CDLFM) model for the cold-start users in the target domain. Firstly, in order to alleviate the data sparsity in single domain and provide essential knowledge for next step, we take users’ rating behaviors into consideration and propose the matrix factorization by incorporating user similarities. Next, to transfer knowledge across domains, we propose the neighborhood-based cross-domain latent feature mapping method. For each cold-start user, we learn his/her feature mapping function based on his/her neighbor linked users. By adopting gradient boosting trees and multilayer perceptron to model the cross-domain feature mapping function, two CDLFM models named CDLFM-GBT and CDLFM-MLP are proposed. Experimental results on two real datasets demonstrate the superiority of our proposed model against other state-of-the-art methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Knowledge and Information Systems 5/2020 Zur Ausgabe

Premium Partner

    Bildnachweise