Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.11.2020 | Ausgabe 3/2021

International Journal of Computer Vision 3/2021

CDTD: A Large-Scale Cross-Domain Benchmark for Instance-Level Image-to-Image Translation and Domain Adaptive Object Detection

Zeitschrift:
International Journal of Computer Vision > Ausgabe 3/2021
Autoren:
Zhiqiang Shen, Mingyang Huang, Jianping Shi, Zechun Liu, Harsh Maheshwari, Yutong Zheng, Xiangyang Xue, Marios Savvides, Thomas S. Huang
Wichtige Hinweise
Communicated by Dengxin Dai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Cross-domain visual problems, such as image-to-image translation and domain adaptive object detection, have attracted increasing attentions in the last few years, and also become new rising and challenging directions for the computer vision community. Recently, despite enormous efforts of the field in data collection, there are still few datasets covering the instance-level image-to-image translation and domain adaptive object detection tasks simultaneously. In this work, we introduce a large-scale cross-domain benchmark CDTD (contains 155,529 high-resolution natural images across four different modalities with object bounding box annotations. A summary of the entire dataset is provided in the following sections. Dataset is available at: http://​zhiqiangshen.​com/​projects/​INIT/​index.​html.) for the new instance-level translation and object detection tasks. We provide comprehensive baseline results of the benchmark on both of these two tasks. Moreover, we proposed a novel instance-level image-to-image translation approach called INIT and a gradient detach method for the domain adaptive object detection to harvest and exert dataset’s function of the instance level annotations across different domains.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2021

International Journal of Computer Vision 3/2021 Zur Ausgabe

Premium Partner