Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

02.04.2021

Cellular Licensed Band Sharing Technology Among Mobile Operators: A Reinforcement Learning Perspective

verfasst von: Minsu Shin, Danish Mehmood Mughal, Seungil Park, Sang-Hyo Kim, Min Young Chung

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Next-generation wireless networks will need to support of very high data rates and low–latency communications, which will require a new wireless radio technology paradigm. The growing number of mobile users is causing spectrum scarcity; and hence, an efficient spectrum utilization method is required. Conventional scheduling-based resource allocation scheme in wireless networks under limited resources is a challenging due to the complex network situations, dynamic network environment, and diverse needs for future networks. To overcome resource scarcity in mobile networks, spectrum sharing among multiple operators may be an efficient solution. Traditional methods of dynamic spectrum sharing are model-dependent, and they are not robust to the changing wireless environments. To enable low-latency communications for complex future wireless networks, efficient machine learning algorithms can be used across the wireless network infrastructure. Integrating machine learning for resource allocation can leverage intelligent and efficient mechanisms for dynamic wireless networks. To efficiently and intelligently utilize the scarce resources of dynamic networks, this paper proposes an efficient machine learning-based spectrum sharing method among multiple mobile network operators (MNOs). A mobile network operator uses the idle slots of the another operator and transmits the information efficiently. Using the neural network model, each MNO learns the spectrum utilization of other MNOs and selects the idle slots of other MNOs. Simulation results have been computed and compared with the conventional scheme where resources are not shared. These simulation results show that the proposed neural network model can efficiently learn the network quickly, and spectrum sharing can lead to improved network performance in terms of the delay, user-perceived throughput, resource usage, packet drop, and sum throughput of the network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Calvanese Strinati, E., Barbarossa, S., Gonzalez-Jimenez, J. L., & Ktenas, D. (2019). 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Vehicular Technology Magazine, 14(3), 42–50.CrossRef Calvanese Strinati, E., Barbarossa, S., Gonzalez-Jimenez, J. L., & Ktenas, D. (2019). 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Vehicular Technology Magazine, 14(3), 42–50.CrossRef
2.
Zurück zum Zitat Zhang, L., Xiao, M., Wu, G., Alam, M., Liang, Y.-C., & Li, S. (2017). A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wireless Communications, 24(5), 44–51.CrossRef Zhang, L., Xiao, M., Wu, G., Alam, M., Liang, Y.-C., & Li, S. (2017). A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wireless Communications, 24(5), 44–51.CrossRef
3.
Zurück zum Zitat Lin, Y. T., Tembine, H., & Chen, K. C. (2012). Inter-operator spectrum sharing in future cellular systems. IEEE Global Communications Conference (GLOBECOM), 2597–2602. Lin, Y. T., Tembine, H., & Chen, K. C. (2012). Inter-operator spectrum sharing in future cellular systems. IEEE Global Communications Conference (GLOBECOM), 2597–2602.
4.
Zurück zum Zitat Luo, J., Eichinger, J., Zhao, Z., & Schulz, E. (2014). Multi-carrier waveform based flexible inter-operator spectrum sharing for 5G systems. IEEE DySPAN, 449–457. Luo, J., Eichinger, J., Zhao, Z., & Schulz, E. (2014). Multi-carrier waveform based flexible inter-operator spectrum sharing for 5G systems. IEEE DySPAN, 449–457.
5.
Zurück zum Zitat Moon, B. (2017). Dynamic spectrum access for internet of things service in cognitive radio-enabled LPWANs. Sensors (Switzerland), 17. Moon, B. (2017). Dynamic spectrum access for internet of things service in cognitive radio-enabled LPWANs. Sensors (Switzerland), 17.
6.
Zurück zum Zitat Bkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine learning techniques in cognitive radios. IEEE Communications Surveys and Tutorials, 15(3), 1136–1159.CrossRef Bkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine learning techniques in cognitive radios. IEEE Communications Surveys and Tutorials, 15(3), 1136–1159.CrossRef
7.
Zurück zum Zitat Wang, W., Kwasinski, A., Niyato, D., & Han, Z. (2016). A survey on applications of model-free strategy learning in cognitive wireless networks. IEEE Communications Surveys and Tutorials, 18(3), 1717–1757.CrossRef Wang, W., Kwasinski, A., Niyato, D., & Han, Z. (2016). A survey on applications of model-free strategy learning in cognitive wireless networks. IEEE Communications Surveys and Tutorials, 18(3), 1717–1757.CrossRef
8.
Zurück zum Zitat Thilina, K. M., Choi, K. W., Saquib, N., & Hossain, E. (2013). Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2209–2221.CrossRef Thilina, K. M., Choi, K. W., Saquib, N., & Hossain, E. (2013). Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2209–2221.CrossRef
9.
Zurück zum Zitat Zhang, J., Kountanis, D. I., & Al-Fuqaha, A. (2012). Two novel learning algorithms to solve the spectrum sharing problem in cognitive radio networks, In 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, 1472–1476. Zhang, J., Kountanis, D. I., & Al-Fuqaha, A. (2012). Two novel learning algorithms to solve the spectrum sharing problem in cognitive radio networks, In 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, 1472–1476.
10.
Zurück zum Zitat Azmat, F., Chen, Y., & Stocks, N. (2016). Analysis of spectrum occupancy using machine learning algorithms. IEEE Transactions on Vehicular Technology, 65(9), 6853–6860.CrossRef Azmat, F., Chen, Y., & Stocks, N. (2016). Analysis of spectrum occupancy using machine learning algorithms. IEEE Transactions on Vehicular Technology, 65(9), 6853–6860.CrossRef
11.
Zurück zum Zitat Shrestha, A. P., & Yoo, S.-J. (2018). Optimal resource allocation using support vector machine for wireless power transfer in cognitive radio networks. IEEE Transactions on Vehicular Technology, 67(9), 8525–8535.CrossRef Shrestha, A. P., & Yoo, S.-J. (2018). Optimal resource allocation using support vector machine for wireless power transfer in cognitive radio networks. IEEE Transactions on Vehicular Technology, 67(9), 8525–8535.CrossRef
12.
Zurück zum Zitat Popoola, J.J., & Van Olst, R. (2011). Application of neural network for sensing primary radio signals in a cognitive radio environment. IEEE Africon’11, Livingstone, Zambia, 1–6. Popoola, J.J., & Van Olst, R. (2011). Application of neural network for sensing primary radio signals in a cognitive radio environment. IEEE Africon’11, Livingstone, Zambia, 1–6.
13.
Zurück zum Zitat Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys and Tutorials, 21(4), 3039–3071.CrossRef Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys and Tutorials, 21(4), 3039–3071.CrossRef
14.
Zurück zum Zitat Zappone, A., Renzo, M. D., & Debbah, M. (2019). Wireless networks design in the era of deep learning: Model-based, AI-based, or both? ArXiv preprint.arXiv:1902.02647. Zappone, A., Renzo, M. D., & Debbah, M. (2019). Wireless networks design in the era of deep learning: Model-based, AI-based, or both? ArXiv preprint.arXiv:​1902.​02647.
15.
Zurück zum Zitat Tan, J., Xiao, S., Han, S. , & Liang, Y. C. (2018). A learning based coexistence mechanism for LAA-LTE based HetNets. In Proc. 2018 IEEE International Conference on Communications, 1–6. Tan, J., Xiao, S., Han, S. , & Liang, Y. C. (2018). A learning based coexistence mechanism for LAA-LTE based HetNets. In Proc. 2018 IEEE International Conference on Communications, 1–6.
16.
Zurück zum Zitat Park, T., Abuzainab, N., & Saad, W. (2016). Learning how to communicate in the internet of things: Finite resources and heterogeneity. IEEE Access, 4, 7063–7073.CrossRef Park, T., Abuzainab, N., & Saad, W. (2016). Learning how to communicate in the internet of things: Finite resources and heterogeneity. IEEE Access, 4, 7063–7073.CrossRef
17.
Zurück zum Zitat Sun, Y., Peng, M., Zhou, Y., Huang, Y., & Mao, S. (2019). Application of machine learning in wireless networks: Key techniques and open issues. IEEE Communications Surveys and Tutorials, 21(4), 3072–3108.CrossRef Sun, Y., Peng, M., Zhou, Y., Huang, Y., & Mao, S. (2019). Application of machine learning in wireless networks: Key techniques and open issues. IEEE Communications Surveys and Tutorials, 21(4), 3072–3108.CrossRef
18.
Zurück zum Zitat Sun, Y., Peng, M., & Poor, H. V. (2018). A distributed approach to improving spectral efficiency in uplink device-to-device-enabled cloud radio access networks. IEEE Transactions on Wireless Communications, 66(12), 6511–6526.CrossRef Sun, Y., Peng, M., & Poor, H. V. (2018). A distributed approach to improving spectral efficiency in uplink device-to-device-enabled cloud radio access networks. IEEE Transactions on Wireless Communications, 66(12), 6511–6526.CrossRef
19.
Zurück zum Zitat Chen, M., Saad, W., & Yin, C. (2017). Echo state networks for self-organizing resource allocation in LTE-U with uplink-downlink decoupling. IEEE Transactions on Wireless Communications, 16(1), 3–16.CrossRef Chen, M., Saad, W., & Yin, C. (2017). Echo state networks for self-organizing resource allocation in LTE-U with uplink-downlink decoupling. IEEE Transactions on Wireless Communications, 16(1), 3–16.CrossRef
20.
Zurück zum Zitat Fan, C., Li, B., Zhao, C., Guo, W., & Liang, Y.-C. (2018). Learning-based spectrum sharing and spatial reuse in mm-Wave ultradense networks. IEEE Transactions on Vehicular Technology, 67(6), 4954–4968.CrossRef Fan, C., Li, B., Zhao, C., Guo, W., & Liang, Y.-C. (2018). Learning-based spectrum sharing and spatial reuse in mm-Wave ultradense networks. IEEE Transactions on Vehicular Technology, 67(6), 4954–4968.CrossRef
21.
Zurück zum Zitat Alnwaimi, G., Vahid, S., & Moessner, K. (2015). Dynamic heterogeneous learning games for opportunistic access in LTE-based macro/femtocell deployments. IEEE Transactions on Wireless Communications, 14(4), 2294–2308.CrossRef Alnwaimi, G., Vahid, S., & Moessner, K. (2015). Dynamic heterogeneous learning games for opportunistic access in LTE-based macro/femtocell deployments. IEEE Transactions on Wireless Communications, 14(4), 2294–2308.CrossRef
22.
Zurück zum Zitat Puspita, R. H., Shah, S. D. A., Lee, G., Roh, B., Oh, J., Kang, S., & (2019). Reinforcement learning based 5g enabled cognitive radio networks. In Proc. . (2019). International Conference on Information and Communication Technology Convergence (ICTC) (pp. 555–558). Korea (South): Jeju Island. Puspita, R. H., Shah, S. D. A., Lee, G., Roh, B., Oh, J., Kang, S., & (2019). Reinforcement learning based 5g enabled cognitive radio networks. In Proc. . (2019). International Conference on Information and Communication Technology Convergence (ICTC) (pp. 555–558). Korea (South): Jeju Island.
23.
Zurück zum Zitat Liang, L., Ye, H., Li, G. Y., & (2019). Multi-agent reinforcement learning for spectrum sharing in vehicular networks. In: Proc. . (2019). IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5). France: Cannes. Liang, L., Ye, H., Li, G. Y., & (2019). Multi-agent reinforcement learning for spectrum sharing in vehicular networks. In: Proc. . (2019). IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5). France: Cannes.
24.
Zurück zum Zitat Liang, L., Ye, H., & Li, G. Y. (2019). Spectrum sharing in vehicular networks based on multi-agent reinforcement learning. IEEE Journal on Selected Areas in Communications, 37(10), 2282–2292.CrossRef Liang, L., Ye, H., & Li, G. Y. (2019). Spectrum sharing in vehicular networks based on multi-agent reinforcement learning. IEEE Journal on Selected Areas in Communications, 37(10), 2282–2292.CrossRef
25.
Zurück zum Zitat Sallent, O., Perez-Romero, J., Ferrus, R., & Agusti, R. (2015). Learning-based coexistence for LTE operation in unlicensed bands. Proc. IEEE ICCW, 2307–2313. Sallent, O., Perez-Romero, J., Ferrus, R., & Agusti, R. (2015). Learning-based coexistence for LTE operation in unlicensed bands. Proc. IEEE ICCW, 2307–2313.
26.
Zurück zum Zitat Wang, T., Wen, C. K., Wang, H., Gao, F., Jiang, T., & Jin, S. (2017). Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 14(11), 92–111.CrossRef Wang, T., Wen, C. K., Wang, H., Gao, F., Jiang, T., & Jin, S. (2017). Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 14(11), 92–111.CrossRef
27.
Zurück zum Zitat Mao, Q., Hu, F., & Hao, Q. (2018). Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(4), 2595–2621.CrossRef Mao, Q., Hu, F., & Hao, Q. (2018). Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(4), 2595–2621.CrossRef
28.
Zurück zum Zitat Ruan, L., & Wong, E. (2018). Machine intelligence in allocating bandwidth to achieve low-latency performance. ONDM, 226–229. Ruan, L., & Wong, E. (2018). Machine intelligence in allocating bandwidth to achieve low-latency performance. ONDM, 226–229.
29.
Zurück zum Zitat Riedmiller, M. (2005). Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method. European Conference on Machine Learning (pp. 317–328). Berlin, Heidelberg: Springer. Riedmiller, M. (2005). Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method. European Conference on Machine Learning (pp. 317–328). Berlin, Heidelberg: Springer.
30.
Zurück zum Zitat Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef
31.
Zurück zum Zitat Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. Technical report, ITU. Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. Technical report, ITU.
32.
Zurück zum Zitat Silva, V., Abrao, T., & Jeszensky, P. J. (2004). Statistically correct simulation models for the generation of multiple uncorrelated Rayleigh fading waveforms. In Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738) Sydney, NSW, Australia, 472–476. Silva, V., Abrao, T., & Jeszensky, P. J. (2004). Statistically correct simulation models for the generation of multiple uncorrelated Rayleigh fading waveforms. In Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738) Sydney, NSW, Australia, 472–476.
Metadaten
Titel
Cellular Licensed Band Sharing Technology Among Mobile Operators: A Reinforcement Learning Perspective
verfasst von
Minsu Shin
Danish Mehmood Mughal
Seungil Park
Sang-Hyo Kim
Min Young Chung
Publikationsdatum
02.04.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08432-0

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt