Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Cellulose-Based Functional and Smart Materials

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To convert the traditional cellulose material into functional and smart materials, a series of procedures involved modification or functionalization of cellulose have been developed. By integrating nanoparticles or other functional materials, the cellulose-based materials can achieve tailored properties such as electrical conductivity, magnetic properties, photosensitivity, catalytic activity, sensing ability, and other special properties. The fabrication processes, properties, and applications of the recently reported cellulose-based functional materials are summarized in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201CrossRef Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201CrossRef
2.
Zurück zum Zitat Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRef Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRef
3.
Zurück zum Zitat Qi H, Liu J, Gao S et al (2013) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J Mater Chem A 1:2161–2168CrossRef Qi H, Liu J, Gao S et al (2013) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J Mater Chem A 1:2161–2168CrossRef
4.
Zurück zum Zitat Russo A, Ahn BY, Adams JJ et al (2011) Pen-on-paper flexible electronics. Adv Mater 23:3426–3430CrossRef Russo A, Ahn BY, Adams JJ et al (2011) Pen-on-paper flexible electronics. Adv Mater 23:3426–3430CrossRef
5.
Zurück zum Zitat Thiemann S, Sachnov SJ, Pettersson F et al (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24:625–634CrossRef Thiemann S, Sachnov SJ, Pettersson F et al (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24:625–634CrossRef
6.
Zurück zum Zitat Oya T, Ogino T (2008) Production of electrically conductive paper by adding carbon nanotubes. Carbon 46:169–171CrossRef Oya T, Ogino T (2008) Production of electrically conductive paper by adding carbon nanotubes. Carbon 46:169–171CrossRef
7.
Zurück zum Zitat Fugetsu B, Sano E, Sunada M et al (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46:1256–1258CrossRef Fugetsu B, Sano E, Sunada M et al (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46:1256–1258CrossRef
8.
Zurück zum Zitat Wei B, Guan P, Zhang L et al (2010) Solubilization of carbon nanotubes by cellulose xanthate toward the fabrication of enhanced amperometric detectors. Carbon 48:1380–1387CrossRef Wei B, Guan P, Zhang L et al (2010) Solubilization of carbon nanotubes by cellulose xanthate toward the fabrication of enhanced amperometric detectors. Carbon 48:1380–1387CrossRef
9.
Zurück zum Zitat Zhang H, Wang Z, Zhang Z et al (2007) Regeneratedcellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef Zhang H, Wang Z, Zhang Z et al (2007) Regeneratedcellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef
10.
Zurück zum Zitat Yun S, Kim J (2007) A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Mater Struct 16:1471–1476CrossRef Yun S, Kim J (2007) A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Mater Struct 16:1471–1476CrossRef
11.
Zurück zum Zitat Kim DH, Park SY, Kim J et al (2010) Preparation and properties of the single-walled carbon nanotube/cellulose nanocomposites using N-methylmorpholine-N-oxide monohydrate. J Appl Polym Sci 117:3588–3594 Kim DH, Park SY, Kim J et al (2010) Preparation and properties of the single-walled carbon nanotube/cellulose nanocomposites using N-methylmorpholine-N-oxide monohydrate. J Appl Polym Sci 117:3588–3594
12.
Zurück zum Zitat Rahatekar SS, Rasheed A, Jain R et al (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583CrossRef Rahatekar SS, Rasheed A, Jain R et al (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583CrossRef
13.
Zurück zum Zitat Qi H, Mäder E, Liu J (2013) Electrically conductive aerogels composed of cellulose and carbon nanotubes. J Mater Chem A 1:9714–9720CrossRef Qi H, Mäder E, Liu J (2013) Electrically conductive aerogels composed of cellulose and carbon nanotubes. J Mater Chem A 1:9714–9720CrossRef
14.
Zurück zum Zitat Qi H, Mäder E, Liu J (2013) Unique water sensors based on carbon nanotube-cellulose composites. Sens Actuator B-Chem 185:225–230CrossRef Qi H, Mäder E, Liu J (2013) Unique water sensors based on carbon nanotube-cellulose composites. Sens Actuator B-Chem 185:225–230CrossRef
15.
Zurück zum Zitat Qi H, Schulz B, Vad T et al (2015) Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 7:22404–22412CrossRef Qi H, Schulz B, Vad T et al (2015) Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 7:22404–22412CrossRef
16.
Zurück zum Zitat Qi H, Liu J, Pionteck J et al (2015) Carbon nanotube-cellulose composite aerogels for vapour sensing. Sens Actuator B-Chem 213:20–26CrossRef Qi H, Liu J, Pionteck J et al (2015) Carbon nanotube-cellulose composite aerogels for vapour sensing. Sens Actuator B-Chem 213:20–26CrossRef
17.
Zurück zum Zitat Avila AG, Hinestroza JP (2008) Smart textiles: tough cotton. Nat Nanotechnol 3:458–459CrossRef Avila AG, Hinestroza JP (2008) Smart textiles: tough cotton. Nat Nanotechnol 3:458–459CrossRef
18.
Zurück zum Zitat Shim BS, Chen W, Doty C et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157CrossRef Shim BS, Chen W, Doty C et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157CrossRef
19.
Zurück zum Zitat Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRef Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRef
20.
Zurück zum Zitat Panhuis MIH, Wu J, Ashraf SA et al (2007) Conducting textiles from single-walled carbon nanotubes. Synth Met 157:358–362CrossRef Panhuis MIH, Wu J, Ashraf SA et al (2007) Conducting textiles from single-walled carbon nanotubes. Synth Met 157:358–362CrossRef
21.
Zurück zum Zitat Zhuang R, Doan TTL, Liu J et al (2011) Multi-functional multi-walled carbon nanotube-jute fibres and composites. Carbon 49:2683–2692CrossRef Zhuang R, Doan TTL, Liu J et al (2011) Multi-functional multi-walled carbon nanotube-jute fibres and composites. Carbon 49:2683–2692CrossRef
22.
Zurück zum Zitat Qi H, Liu J, Mäder E (2014) Smart cellulose fibers coated with carbon nanotube networks. Fibers 2:295–307CrossRef Qi H, Liu J, Mäder E (2014) Smart cellulose fibers coated with carbon nanotube networks. Fibers 2:295–307CrossRef
23.
Zurück zum Zitat Qi H, Liu J, Deng Y et al (2014) Cellulose fibres with carbon nanotube networks for water sensing. J Mater Chem A 2:5541–5547CrossRef Qi H, Liu J, Deng Y et al (2014) Cellulose fibres with carbon nanotube networks for water sensing. J Mater Chem A 2:5541–5547CrossRef
24.
Zurück zum Zitat Han JW, Kim B, Li J et al (2012) Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C 116:22094–22097CrossRef Han JW, Kim B, Li J et al (2012) Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C 116:22094–22097CrossRef
25.
Zurück zum Zitat Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5:6423–6435CrossRef Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5:6423–6435CrossRef
26.
Zurück zum Zitat Khan A, Abas Z, Kim HS et al (2016) Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications. Sensors 16:1172CrossRef Khan A, Abas Z, Kim HS et al (2016) Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications. Sensors 16:1172CrossRef
27.
Zurück zum Zitat Kim J, Seo YB (2002) Electro-active paper actuators. Smart Mater Struct 11:355–360CrossRef Kim J, Seo YB (2002) Electro-active paper actuators. Smart Mater Struct 11:355–360CrossRef
28.
Zurück zum Zitat Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRef Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRef
29.
Zurück zum Zitat Abas Z, Kim HS, Kim J et al (2014) Cellulose electro-active paper: from discovery to technology applications. Front Mater 1:1–4CrossRef Abas Z, Kim HS, Kim J et al (2014) Cellulose electro-active paper: from discovery to technology applications. Front Mater 1:1–4CrossRef
30.
Zurück zum Zitat Yun S, Kim J, Song C (2007) Performance of electro-active paper actuators with thickness variation. Sens Actuat A Phys 133:225–230CrossRef Yun S, Kim J, Song C (2007) Performance of electro-active paper actuators with thickness variation. Sens Actuat A Phys 133:225–230CrossRef
31.
Zurück zum Zitat Deshpande SD, Kim J, Yun SR (2005) Studies on conducting polymer electroactive paper actuators: effect of humidity and electrode thickness. Smart Mater Struct 14:876–880CrossRef Deshpande SD, Kim J, Yun SR (2005) Studies on conducting polymer electroactive paper actuators: effect of humidity and electrode thickness. Smart Mater Struct 14:876–880CrossRef
32.
Zurück zum Zitat Yun SY, Kim J, Ounaies Z (2006) Single-walled carbon nanotube/polyaniline coated cellulose based electro-active paper (EAPap) as hybrid actuator. Smart Mater Struct 15:N61–N65CrossRef Yun SY, Kim J, Ounaies Z (2006) Single-walled carbon nanotube/polyaniline coated cellulose based electro-active paper (EAPap) as hybrid actuator. Smart Mater Struct 15:N61–N65CrossRef
33.
Zurück zum Zitat Yun S, Kim J (2007) A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Mater Struct 16:1471–1476CrossRef Yun S, Kim J (2007) A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Mater Struct 16:1471–1476CrossRef
34.
Zurück zum Zitat Kim J, Jung W, Kim HS (2007) In-plane strain of electro-active paper under electric fields. Sens Actuat A Phys 140:225–231CrossRef Kim J, Jung W, Kim HS (2007) In-plane strain of electro-active paper under electric fields. Sens Actuat A Phys 140:225–231CrossRef
35.
Zurück zum Zitat Luong ND, Pahimanolis N, Hippi U et al (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998CrossRef Luong ND, Pahimanolis N, Hippi U et al (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998CrossRef
36.
Zurück zum Zitat Gao K, Shao Z, Li J et al (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1:63–67CrossRef Gao K, Shao Z, Li J et al (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1:63–67CrossRef
37.
Zurück zum Zitat Mahmoudian S, Reza Sazegar M, Afshari N et al (2015) Graphene reinforced regenerated cellulose nanocomposite fibers prepared by lyocell process. Polym Compos. doi:10.1002/pc.23864 Mahmoudian S, Reza Sazegar M, Afshari N et al (2015) Graphene reinforced regenerated cellulose nanocomposite fibers prepared by lyocell process. Polym Compos. doi:10.​1002/​pc.​23864
38.
Zurück zum Zitat Zhang X, Liu X, Zheng W et al (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohyd Polym 88:26–30CrossRef Zhang X, Liu X, Zheng W et al (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohyd Polym 88:26–30CrossRef
39.
Zurück zum Zitat Zhang T, Liu X, Jiang M et al (2015) Effect of cellulose solubility on the thermal and mechanical properties of regenerated cellulose/graphene nanocomposites based on ionic liquid 1-allyl-3-methylimidazoliun chloride. RSC Adv 5:76302–76308CrossRef Zhang T, Liu X, Jiang M et al (2015) Effect of cellulose solubility on the thermal and mechanical properties of regenerated cellulose/graphene nanocomposites based on ionic liquid 1-allyl-3-methylimidazoliun chloride. RSC Adv 5:76302–76308CrossRef
40.
Zurück zum Zitat Mahmoudian S, Wahit MU, Imran M et al (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12:5233–5239CrossRef Mahmoudian S, Wahit MU, Imran M et al (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12:5233–5239CrossRef
41.
Zurück zum Zitat Shi X, Zhang L, Cai J et al (2011) A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system. Macromolecules 44:4565–4568CrossRef Shi X, Zhang L, Cai J et al (2011) A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system. Macromolecules 44:4565–4568CrossRef
42.
Zurück zum Zitat Shi X, Hu Y, Li M et al (2014) Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors. Cellulose 21:2337–2347CrossRef Shi X, Hu Y, Li M et al (2014) Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors. Cellulose 21:2337–2347CrossRef
43.
Zurück zum Zitat Shi X, Hu Y, Tu K et al (2013) Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter 9:10129–10134CrossRef Shi X, Hu Y, Tu K et al (2013) Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter 9:10129–10134CrossRef
44.
Zurück zum Zitat Shi Z, Gao H, Feng J et al (2014) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem Int Ed 53:5380–5384CrossRef Shi Z, Gao H, Feng J et al (2014) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem Int Ed 53:5380–5384CrossRef
45.
Zurück zum Zitat Liu Z, Li M, Turyanska L et al (2010) Self-assembly of electrically conducting biopolymer thin films by cellulose regeneration in gold nanoparticle aqueous dispersions. Chem Mater 22:2675–2680CrossRef Liu Z, Li M, Turyanska L et al (2010) Self-assembly of electrically conducting biopolymer thin films by cellulose regeneration in gold nanoparticle aqueous dispersions. Chem Mater 22:2675–2680CrossRef
46.
Zurück zum Zitat Raymond L, Revol JF, Ryan DH et al (1994) In situ synthesis of ferrites in cellulosics. Chem Mater 6:249–255CrossRef Raymond L, Revol JF, Ryan DH et al (1994) In situ synthesis of ferrites in cellulosics. Chem Mater 6:249–255CrossRef
47.
Zurück zum Zitat Luo X, Liu S, Zhou J et al (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545CrossRef Luo X, Liu S, Zhou J et al (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545CrossRef
48.
Zurück zum Zitat Luo X, Zhang L (2010) Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules 11:2896–2903CrossRef Luo X, Zhang L (2010) Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules 11:2896–2903CrossRef
49.
Zurück zum Zitat Rioux P, Ricard S, Marchessault RH (1992) The preparation of magnetic papermaking fibers. J Pulp Pap Sci 18:39–43 Rioux P, Ricard S, Marchessault RH (1992) The preparation of magnetic papermaking fibers. J Pulp Pap Sci 18:39–43
50.
Zurück zum Zitat Marchessault RH, Rioux P, Raymond L (1992) Magnetic cellulose fibers and paper: preparation, processing and properties. Polymer 33:4024–4028CrossRef Marchessault RH, Rioux P, Raymond L (1992) Magnetic cellulose fibers and paper: preparation, processing and properties. Polymer 33:4024–4028CrossRef
51.
Zurück zum Zitat Zakaria S, Ong BH, Van de Ven TGM (2004) Lumen loading magnetic paper I: flocculation. Colloids Surf A 251:1–4CrossRef Zakaria S, Ong BH, Van de Ven TGM (2004) Lumen loading magnetic paper I: flocculation. Colloids Surf A 251:1–4CrossRef
52.
Zurück zum Zitat Zakaria S, Ong BH, Van de Ven TGM (2004) Lumen loading magnetic paper II: mechanism and kinetics. Colloids Surf A 251:31–36CrossRef Zakaria S, Ong BH, Van de Ven TGM (2004) Lumen loading magnetic paper II: mechanism and kinetics. Colloids Surf A 251:31–36CrossRef
53.
Zurück zum Zitat Chia CH, Zakaria S, Bguyen KL et al (2008) Utilisation of unbleached kenaf fibers for the preparation of magnetic paper. Ind Crops Prod 28:333–339CrossRef Chia CH, Zakaria S, Bguyen KL et al (2008) Utilisation of unbleached kenaf fibers for the preparation of magnetic paper. Ind Crops Prod 28:333–339CrossRef
54.
Zurück zum Zitat Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86:162–170CrossRef Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86:162–170CrossRef
55.
Zurück zum Zitat Liu S, Zhang L, Zhou J et al (2008) Fiber like Fe2O3 Macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem Mater 20:3623–3628CrossRef Liu S, Zhang L, Zhou J et al (2008) Fiber like Fe2O3 Macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem Mater 20:3623–3628CrossRef
56.
Zurück zum Zitat Liu S, Zhang L, Zhou J et al (2008) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:4538–4544CrossRef Liu S, Zhang L, Zhou J et al (2008) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:4538–4544CrossRef
57.
Zurück zum Zitat Liu S, Zhou J, Zhang L (2011) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673CrossRef Liu S, Zhou J, Zhang L (2011) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673CrossRef
58.
Zurück zum Zitat Liu S, Li R, Zhou J et al (2012) Effects of external factors on the arrangement of plate-liked Fe2O3 nanoparticles in cellulose scaffolds. Carbohydr Polym 87:830–838CrossRef Liu S, Li R, Zhou J et al (2012) Effects of external factors on the arrangement of plate-liked Fe2O3 nanoparticles in cellulose scaffolds. Carbohydr Polym 87:830–838CrossRef
59.
Zurück zum Zitat Luo X, Liu S, Zhou J et al (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545CrossRef Luo X, Liu S, Zhou J et al (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545CrossRef
60.
Zurück zum Zitat Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347CrossRef Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347CrossRef
61.
Zurück zum Zitat Rubacha M, Zięba J (2007) Magnetic cellulose fibers and their application in textronics. Fibers Text East Eur 5–6:101–104 Rubacha M, Zięba J (2007) Magnetic cellulose fibers and their application in textronics. Fibers Text East Eur 5–6:101–104
62.
Zurück zum Zitat Fang Z, Zhu H, Preston C et al (2014) Development, application and commercialization of transparent paper. Transl Mater Res 1:015004CrossRef Fang Z, Zhu H, Preston C et al (2014) Development, application and commercialization of transparent paper. Transl Mater Res 1:015004CrossRef
63.
Zurück zum Zitat Zhu H, Fang Z, Preston C et al (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287CrossRef Zhu H, Fang Z, Preston C et al (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287CrossRef
64.
Zurück zum Zitat Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRef Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRef
65.
Zurück zum Zitat Chang C, Peng J, Zhang L et al (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776CrossRef Chang C, Peng J, Zhang L et al (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776CrossRef
66.
Zurück zum Zitat Zhou D, Zou H, Liu M et al (2015) Surface ligand dynamics-guided preparation of quantum dots-cellulose composites for light-emitting diodes. ACS Appl Mater Interfaces 7:15830–15839CrossRef Zhou D, Zou H, Liu M et al (2015) Surface ligand dynamics-guided preparation of quantum dots-cellulose composites for light-emitting diodes. ACS Appl Mater Interfaces 7:15830–15839CrossRef
67.
Zurück zum Zitat Zeng J, Yan L (2015) Metal-free transparent luminescent cellulose films. Cellulose 22:729–736CrossRef Zeng J, Yan L (2015) Metal-free transparent luminescent cellulose films. Cellulose 22:729–736CrossRef
68.
Zurück zum Zitat Campos BB, Geldeb L, Algarra M et al (2016) Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles. Carbohydr Polym 151:939–946CrossRef Campos BB, Geldeb L, Algarra M et al (2016) Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles. Carbohydr Polym 151:939–946CrossRef
69.
Zurück zum Zitat Wang Q, Cai J, Zhang L (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21:3371–3382CrossRef Wang Q, Cai J, Zhang L (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21:3371–3382CrossRef
70.
Zurück zum Zitat Mohamed MA, Salleh WNW, Jaafar J et al (2015) Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr Polym 133:429–437CrossRef Mohamed MA, Salleh WNW, Jaafar J et al (2015) Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr Polym 133:429–437CrossRef
71.
Zurück zum Zitat Mohamed MA, Salleh WNW, Jaafar J et al (2016) Regenerated Cellulose Membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Polymers 146:166–173 Mohamed MA, Salleh WNW, Jaafar J et al (2016) Regenerated Cellulose Membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Polymers 146:166–173
72.
Zurück zum Zitat Cai J, Kimura S, Wada M et al (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94CrossRef Cai J, Kimura S, Wada M et al (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94CrossRef
73.
Zurück zum Zitat Li R, He M, Li T (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115:269–275CrossRef Li R, He M, Li T (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115:269–275CrossRef
74.
Zurück zum Zitat Schestakow M, Muench F, Reimuth C (2016) Electroless synthesis of cellulose-metal aerogel composites. Appl Phys Lett 108:213108CrossRef Schestakow M, Muench F, Reimuth C (2016) Electroless synthesis of cellulose-metal aerogel composites. Appl Phys Lett 108:213108CrossRef
75.
Zurück zum Zitat Schueren LVD, Clerck KD, Brancatelli G et al (2012) Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of Methyl Red into a sol-gel matrix. Sens Actuators B Chem 162:27–34CrossRef Schueren LVD, Clerck KD, Brancatelli G et al (2012) Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of Methyl Red into a sol-gel matrix. Sens Actuators B Chem 162:27–34CrossRef
76.
Zurück zum Zitat Mahadeva SK, Ko HU, Kim J (2013) Investigation of cellulose and tin oxide hybrid composite as a disposable pH sensor Z Phys Chem 227:419–428 Mahadeva SK, Ko HU, Kim J (2013) Investigation of cellulose and tin oxide hybrid composite as a disposable pH sensor Z Phys Chem 227:419–428
77.
Zurück zum Zitat Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens Actuator A-Phys 165:194–199CrossRef Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens Actuator A-Phys 165:194–199CrossRef
78.
Zurück zum Zitat Chen Y, Jang SD, Kim J (2012) Gas sensing properties of gallium nitride-coated cellulose nanocomposite. Sensor Lett 10:748–753CrossRef Chen Y, Jang SD, Kim J (2012) Gas sensing properties of gallium nitride-coated cellulose nanocomposite. Sensor Lett 10:748–753CrossRef
79.
Zurück zum Zitat Mahadeva SK, Kim J (2011) Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sens Actuator B-Chem 157:177–182CrossRef Mahadeva SK, Kim J (2011) Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sens Actuator B-Chem 157:177–182CrossRef
80.
Zurück zum Zitat Mahadeva SK, Kim J (2013) Porous tin-oxide-coated regenerated cellulose as disposable and low-cost alternative transducer for urea detection. IEEE Sensors J 13:2223–2228CrossRef Mahadeva SK, Kim J (2013) Porous tin-oxide-coated regenerated cellulose as disposable and low-cost alternative transducer for urea detection. IEEE Sensors J 13:2223–2228CrossRef
81.
Zurück zum Zitat Poplin J, Swatloski R, Holbrey J et al (2007) Sensor technologies based on a cellulose supported platform. Chem Commun 20:2025–2027CrossRef Poplin J, Swatloski R, Holbrey J et al (2007) Sensor technologies based on a cellulose supported platform. Chem Commun 20:2025–2027CrossRef
82.
Zurück zum Zitat Kim J-H, Mun S, Ko H-U et al (2014) Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology 25:092001CrossRef Kim J-H, Mun S, Ko H-U et al (2014) Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology 25:092001CrossRef
Metadaten
Titel
Cellulose-Based Functional and Smart Materials
verfasst von
Haisong Qi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49592-7_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.