Skip to main content
Erschienen in: Cellulose 8/2021

05.04.2021 | Original Research

Cellulose cryogels prepared by regeneration from phosphoric acid solutions

verfasst von: Irina V. Tyshkunova, Dmitry G. Chukhchin, Iosif V. Gofman, Daria N. Poshina, Yury A. Skorik

Erschienen in: Cellulose | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The supermacroporous structure and ease of preparation of polysaccharide-based cryogels have led to their wide use in many areas and make them promising biomaterials for tissue engineering. One polysaccharide of particular interest for the production of tissue engineering scaffolds is cellulose, a natural biocompatible and nontoxic polymer. However, the complex supramolecular structure of cellulose creates difficulties in its dissolution and further processing into biomedical products. Conventional cellulose solvents have significant disadvantages, including poor removal from the resulting products. Therefore, this work proposes the preparation of cellulose-based cryogels using orthophosphoric acid, which can be easily removed and recovered. The effect of cellulose dissolution conditions on the structure and properties of cryogels were studied. Highly porous (88.3–93.4%) and light (ρ 0.091–0.161 g/cm3) cryogels with complex hierarchical morphologies were produced using a dissolution temperature of (20 ± 2) °C, a cellulose concentration in the solution > 3%, a dissolution time of 24–48 h (depending on the cellulose concentration), and precipitation with water or acetone. 13C CP-MAS NMR spectroscopy results confirmed that the regenerated cellulose is predominantly amorphous, with a crystallinity of 6.8–30.6% in the structure of cellulose II. The compressive modulus E for cryogels was from 330 to 3675 kPa. FTIR spectroscopy results showed that the regenerated cellulose had an increased number of aldehyde groups and a decreased number of hydrogen bonds decreases, indicating a decrease in crystallinity. No phosphoric acid esters of cellulose were detected in the cryogels by FTIR spectroscopy. These results pave the way for the easy preparation of biomaterials for tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Boerstoel H, Maatman H, Westerink J, Koenders B (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379CrossRef Boerstoel H, Maatman H, Westerink J, Koenders B (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379CrossRef
Zurück zum Zitat Buchtová N, Pradille C, Bouvard J-L, Budtova T (2019) Mechanical properties of cellulose aerogels and cryogels. Soft matter 15:7901–7908CrossRef Buchtová N, Pradille C, Bouvard J-L, Budtova T (2019) Mechanical properties of cellulose aerogels and cryogels. Soft matter 15:7901–7908CrossRef
Zurück zum Zitat Buchtova N, Budtova T (2016) Cellulose aero-, cryo-and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595CrossRef Buchtova N, Budtova T (2016) Cellulose aero-, cryo-and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595CrossRef
Zurück zum Zitat Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRef Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRef
Zurück zum Zitat Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym 181:879–884CrossRef Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym 181:879–884CrossRef
Zurück zum Zitat Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr Polym 151:392–400CrossRef Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr Polym 151:392–400CrossRef
Zurück zum Zitat Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300CrossRef Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300CrossRef
Zurück zum Zitat Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chemistry 20:3993–4002CrossRef Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chemistry 20:3993–4002CrossRef
Zurück zum Zitat El-Naggar ME, Othman SI, Allam AA, Morsy OM (2020) Synthesis drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 145:1115–1128CrossRef El-Naggar ME, Othman SI, Allam AA, Morsy OM (2020) Synthesis drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 145:1115–1128CrossRef
Zurück zum Zitat Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohyd Polym 147:89–96CrossRef Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohyd Polym 147:89–96CrossRef
Zurück zum Zitat Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRef Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRef
Zurück zum Zitat Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromol 10:1188–1194CrossRef Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromol 10:1188–1194CrossRef
Zurück zum Zitat Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410CrossRef Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410CrossRef
Zurück zum Zitat Grinshpan DD, Gonchar AN, Savitskaya TA, Tsygankova NG, Makarevich SE (2014) Regenerated cellulose fiber production from cellulose solutions in orthophosphoric acid Proceedings of the National Academy of Sciences of Belarus Chemical series:115–118 Grinshpan DD, Gonchar AN, Savitskaya TA, Tsygankova NG, Makarevich SE (2014) Regenerated cellulose fiber production from cellulose solutions in orthophosphoric acid Proceedings of the National Academy of Sciences of Belarus Chemical series:115–118
Zurück zum Zitat Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:84–90CrossRef Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:84–90CrossRef
Zurück zum Zitat Henniges U, Schiehser S, Rosenau T, Potthast A (2010) Cellulose solubility: dissolution and analysis of" problematic" cellulose pulps in the solvent system DMAc/LiCl. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Publications, pp 165–177CrossRef Henniges U, Schiehser S, Rosenau T, Potthast A (2010) Cellulose solubility: dissolution and analysis of" problematic" cellulose pulps in the solvent system DMAc/LiCl. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Publications, pp 165–177CrossRef
Zurück zum Zitat Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27CrossRef Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27CrossRef
Zurück zum Zitat Hesse S, Jäger C (2005) Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II. Cellulose 12:5–14CrossRef Hesse S, Jäger C (2005) Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II. Cellulose 12:5–14CrossRef
Zurück zum Zitat Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 62:29–41CrossRef Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 62:29–41CrossRef
Zurück zum Zitat Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRef Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRef
Zurück zum Zitat McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N N-dimethylacetamide. Macromolecules 18:2394–2401CrossRef McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N N-dimethylacetamide. Macromolecules 18:2394–2401CrossRef
Zurück zum Zitat Mohamed SMK, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201CrossRef Mohamed SMK, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201CrossRef
Zurück zum Zitat Omura T, Imagawa K, Kono K, Suzuki T, Minami H (2017) Encapsulation of either hydrophilic or hydrophobic substances in spongy cellulose particles. ACS Appl Mater Interfaces 9:944–949CrossRef Omura T, Imagawa K, Kono K, Suzuki T, Minami H (2017) Encapsulation of either hydrophilic or hydrophobic substances in spongy cellulose particles. ACS Appl Mater Interfaces 9:944–949CrossRef
Zurück zum Zitat Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13 C nuclear magnetic resonance. Cellulose 16:641–647CrossRef Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13 C nuclear magnetic resonance. Cellulose 16:641–647CrossRef
Zurück zum Zitat Pircher N et al (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966CrossRef Pircher N et al (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966CrossRef
Zurück zum Zitat Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759CrossRef Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759CrossRef
Zurück zum Zitat Ram B, Chauhan GS (2018) New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions. Chem Eng J 331:587–596CrossRef Ram B, Chauhan GS (2018) New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions. Chem Eng J 331:587–596CrossRef
Zurück zum Zitat Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291CrossRef Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291CrossRef
Zurück zum Zitat Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose−NaOH solutions. Biomacromolecules 4:259–264CrossRef Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose−NaOH solutions. Biomacromolecules 4:259–264CrossRef
Zurück zum Zitat Saylan Y, Denizli A (2019) Supermacroporous composite cryogels in biomedical applications. Gels 5:20CrossRef Saylan Y, Denizli A (2019) Supermacroporous composite cryogels in biomedical applications. Gels 5:20CrossRef
Zurück zum Zitat Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRef Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRef
Zurück zum Zitat Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohyd Polym 93:291–299CrossRef Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohyd Polym 93:291–299CrossRef
Zurück zum Zitat Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRef Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRef
Zurück zum Zitat Zhang J et al (2009) Dissolution of microcrystalline cellulose in phosphoric acid—molecular changes and kinetics. Molecules 14:5027–5041CrossRef Zhang J et al (2009) Dissolution of microcrystalline cellulose in phosphoric acid—molecular changes and kinetics. Molecules 14:5027–5041CrossRef
Zurück zum Zitat Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef
Zurück zum Zitat Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends materials chemistry. Frontiers 1:1273–1290 Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends materials chemistry. Frontiers 1:1273–1290
Metadaten
Titel
Cellulose cryogels prepared by regeneration from phosphoric acid solutions
verfasst von
Irina V. Tyshkunova
Dmitry G. Chukhchin
Iosif V. Gofman
Daria N. Poshina
Yury A. Skorik
Publikationsdatum
05.04.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2021
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03851-5

Weitere Artikel der Ausgabe 8/2021

Cellulose 8/2021 Zur Ausgabe