Skip to main content
Erschienen in: Cellulose 7/2017

09.05.2017 | Original Paper

Cellulose–halloysite nanotube composite hydrogels for curcumin delivery

verfasst von: Biao Huang, Mingxian Liu, Changren Zhou

Erschienen in: Cellulose | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdullayev E, Joshi A, Wei W et al (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8):7216–7226CrossRef Abdullayev E, Joshi A, Wei W et al (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8):7216–7226CrossRef
Zurück zum Zitat Ariga K, Lvov YM, Kawakami K et al (2011) Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 63(9):762–771CrossRef Ariga K, Lvov YM, Kawakami K et al (2011) Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 63(9):762–771CrossRef
Zurück zum Zitat Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548CrossRef Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548CrossRef
Zurück zum Zitat Cai J, Liu S, Feng J et al (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem 124(9):2118–2121CrossRef Cai J, Liu S, Feng J et al (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem 124(9):2118–2121CrossRef
Zurück zum Zitat Cavallaro G, Lazzara G, Konnova S et al (2014) Composite films of natural clay nanotubes with cellulose and chitosan. Green Mater 2(4):232CrossRef Cavallaro G, Lazzara G, Konnova S et al (2014) Composite films of natural clay nanotubes with cellulose and chitosan. Green Mater 2(4):232CrossRef
Zurück zum Zitat Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1):13 Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1):13
Zurück zum Zitat De Oliveira Barud HG, Da Silva RR, Da Silva Barud H et al (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420CrossRef De Oliveira Barud HG, Da Silva RR, Da Silva Barud H et al (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420CrossRef
Zurück zum Zitat Demilecamps A, Reichenauer G, Rigacci A et al (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21(4):2625–2636CrossRef Demilecamps A, Reichenauer G, Rigacci A et al (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21(4):2625–2636CrossRef
Zurück zum Zitat Divakaran AV, Azad LB, Surwase SS et al (2016) Mechanically tunable curcumin incorporated polyurethane hydrogels as potential biomaterials. Chem Mater 28(7):2120–2130CrossRef Divakaran AV, Azad LB, Surwase SS et al (2016) Mechanically tunable curcumin incorporated polyurethane hydrogels as potential biomaterials. Chem Mater 28(7):2120–2130CrossRef
Zurück zum Zitat Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
Zurück zum Zitat Hanid NA, Wahit MU, Guo Q et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97CrossRef Hanid NA, Wahit MU, Guo Q et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97CrossRef
Zurück zum Zitat Huang B, Liu M, Long Z et al (2017) Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng, C 70:303–310CrossRef Huang B, Liu M, Long Z et al (2017) Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng, C 70:303–310CrossRef
Zurück zum Zitat Jiang MC, Yang-Yen HF, Yen JJY et al (1996) Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26(1):111–120CrossRef Jiang MC, Yang-Yen HF, Yen JJY et al (1996) Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26(1):111–120CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef
Zurück zum Zitat Levis S, Deasy P (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243(1):125–134CrossRef Levis S, Deasy P (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243(1):125–134CrossRef
Zurück zum Zitat Li S-M, Jia N, Ma M-G et al (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447CrossRef Li S-M, Jia N, Ma M-G et al (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447CrossRef
Zurück zum Zitat Liu M, Guo B, Du M et al (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45):455703CrossRef Liu M, Guo B, Du M et al (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45):455703CrossRef
Zurück zum Zitat Liu M, Li W, Rong J et al (2012) Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290(10):895–905CrossRef Liu M, Li W, Rong J et al (2012) Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290(10):895–905CrossRef
Zurück zum Zitat Liu M, Wu C, Jiao Y et al (2013a) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1(15):2078–2089CrossRef Liu M, Wu C, Jiao Y et al (2013a) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1(15):2078–2089CrossRef
Zurück zum Zitat Liu M, Zhang Y, Li J et al (2013b) Chitin-natural clay nanotubes hybrid hydrogel. Int J Biol Macromol 58:23–30CrossRef Liu M, Zhang Y, Li J et al (2013b) Chitin-natural clay nanotubes hybrid hydrogel. Int J Biol Macromol 58:23–30CrossRef
Zurück zum Zitat Liu M, Jia Z, Jia D et al (2014a) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525CrossRef Liu M, Jia Z, Jia D et al (2014a) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525CrossRef
Zurück zum Zitat Liu M, Shen Y, Ao P et al (2014b) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4(45):23540–23553CrossRef Liu M, Shen Y, Ao P et al (2014b) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4(45):23540–23553CrossRef
Zurück zum Zitat Liu M, Huang J, Luo B et al (2015) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31CrossRef Liu M, Huang J, Luo B et al (2015) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31CrossRef
Zurück zum Zitat Liu M, Chang Y, Yang J et al (2016a) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 4(13):2253–2263CrossRef Liu M, Chang Y, Yang J et al (2016a) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 4(13):2253–2263CrossRef
Zurück zum Zitat Liu M, He R, Yang J et al (2016b) Polysaccharide–halloysite nanotube composites for biomedical applications: a review. Clay Miner 51(3):457–467CrossRef Liu M, He R, Yang J et al (2016b) Polysaccharide–halloysite nanotube composites for biomedical applications: a review. Clay Miner 51(3):457–467CrossRef
Zurück zum Zitat Liu M, He R, Yang J et al (2016c) Stripe-like clay nanotubes patterns in glass capillary tubes for capture of tumor cells. ACS Appl Mater Interfaces 8(12):7709–7719CrossRef Liu M, He R, Yang J et al (2016c) Stripe-like clay nanotubes patterns in glass capillary tubes for capture of tumor cells. ACS Appl Mater Interfaces 8(12):7709–7719CrossRef
Zurück zum Zitat Luo P, Zhao Y, Zhang B et al (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44(5):1489–1497CrossRef Luo P, Zhao Y, Zhang B et al (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44(5):1489–1497CrossRef
Zurück zum Zitat Lvov YM, Shchukin DG, Mohwald H et al (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820CrossRef Lvov YM, Shchukin DG, Mohwald H et al (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820CrossRef
Zurück zum Zitat Lvov Y, Wang W, Zhang L et al (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250CrossRef Lvov Y, Wang W, Zhang L et al (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250CrossRef
Zurück zum Zitat Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51CrossRef Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51CrossRef
Zurück zum Zitat Meibom KL, Li XB, Nielsen AT et al (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101(8):2524–2529CrossRef Meibom KL, Li XB, Nielsen AT et al (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101(8):2524–2529CrossRef
Zurück zum Zitat Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef
Zurück zum Zitat Mukhopadhyay A, Bueso-Ramos C, Chatterjee D et al (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609CrossRef Mukhopadhyay A, Bueso-Ramos C, Chatterjee D et al (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609CrossRef
Zurück zum Zitat Pandey G, Munguambe DM, Tharmavaram M et al (2017) Halloysite nanotubes-An efficient ‘nano-support’for the immobilization of α-amylase. Appl Clay Sci 136:184–191CrossRef Pandey G, Munguambe DM, Tharmavaram M et al (2017) Halloysite nanotubes-An efficient ‘nano-support’for the immobilization of α-amylase. Appl Clay Sci 136:184–191CrossRef
Zurück zum Zitat Price RR, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18(6):713–722CrossRef Price RR, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18(6):713–722CrossRef
Zurück zum Zitat Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11(3):495–510CrossRef Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11(3):495–510CrossRef
Zurück zum Zitat Ren X, Chen D, Meng X et al (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. Colloids Surf B 72(2):188–192CrossRef Ren X, Chen D, Meng X et al (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. Colloids Surf B 72(2):188–192CrossRef
Zurück zum Zitat Russo R, Malinconico M, Santagata G (2007) Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromol 8(10):3193–3197CrossRef Russo R, Malinconico M, Santagata G (2007) Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromol 8(10):3193–3197CrossRef
Zurück zum Zitat Soheilmoghaddam M, Wahit MU, Mahmoudian S et al (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2):936–943CrossRef Soheilmoghaddam M, Wahit MU, Mahmoudian S et al (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2):936–943CrossRef
Zurück zum Zitat Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39(2):455–463CrossRef Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39(2):455–463CrossRef
Zurück zum Zitat Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826CrossRef Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826CrossRef
Zurück zum Zitat Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A. doi:10.1039/C6TA04844G Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A. doi:10.​1039/​C6TA04844G
Zurück zum Zitat Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79(8):848–862CrossRef Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79(8):848–862CrossRef
Zurück zum Zitat Yang J, Wu Y, Shen Y et al (2016) Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl Mater Interfaces 8(40):26578–26590CrossRef Yang J, Wu Y, Shen Y et al (2016) Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl Mater Interfaces 8(40):26578–26590CrossRef
Zurück zum Zitat Yu X, Tong S, Ge M et al (2013) Removal of fluoride from drinking water by cellulose@ hydroxyapatite nanocomposites. Carbohydr Polym 92(1):269–275CrossRef Yu X, Tong S, Ge M et al (2013) Removal of fluoride from drinking water by cellulose@ hydroxyapatite nanocomposites. Carbohydr Polym 92(1):269–275CrossRef
Zurück zum Zitat Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751CrossRef Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751CrossRef
Zurück zum Zitat Zhang H, Wang Z, Zhang Z et al (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19(5):698–704CrossRef Zhang H, Wang Z, Zhang Z et al (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19(5):698–704CrossRef
Zurück zum Zitat Zhang X, Liu X, Zheng W et al (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30CrossRef Zhang X, Liu X, Zheng W et al (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30CrossRef
Zurück zum Zitat Zhu B-K, Xie S-H, Xu Z-K et al (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3):548–554CrossRef Zhu B-K, Xie S-H, Xu Z-K et al (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3):548–554CrossRef
Metadaten
Titel
Cellulose–halloysite nanotube composite hydrogels for curcumin delivery
verfasst von
Biao Huang
Mingxian Liu
Changren Zhou
Publikationsdatum
09.05.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 7/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1316-8

Weitere Artikel der Ausgabe 7/2017

Cellulose 7/2017 Zur Ausgabe