Skip to main content
Erschienen in: Cellulose 18/2019

11.09.2019 | Original Research

Cellulose nanocrystal structure in the presence of salts

verfasst von: Aref Abbasi Moud, Mohammad Arjmand, Jie Liu, Yongfei Yang, Amir Sanati-Nezhad, S. Hossein Hejazi

Erschienen in: Cellulose | Ausgabe 18/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aggregation and gelation of cellulose nanocrystals (CNCs) induced by magnesium chloride (MgCl2) are investigated as a function of CNC and MgCl2 concentrations. Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) are employed to study the effect of ionic strength and CNC concentration on the extent of aggregation and structure of the CNC network. The location of CNC particles is traced with Fluorescent brightener 28 staining agent. The results show that the addition of different amounts of MgCl2 causes a cluster formation of CNCs with different fractal dimensions, confirmed by TEM. The fractal dimension of CNC clusters varied from approximately 1.56 ± 0.08 to 1.98 ± 0.01 as the MgCl2/CNC concentration ratio is increased from 0.17 to 0.42. We use the MgCl2/CNC concentration ratio as a global parameter to correlate the results of different measurements and imaging data, including TEM, zeta potential and CLSM. Furthermore, we conduct molecular dynamic simulations to quantitatively examine different CNC behavior in MgCl2 salt–CNC suspension. The results on the potential of mean force (PMF) indicate that the PMF of different ions concentration gravitates to zero where the distance between CNCs is increased from 3.1 nm to 3.5 nm. However, adding ions to the system changes the energy of the system and leads to a different behavior of CNC interactions.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allain C, Cloitre M, Wafra M (1995) Aggregation and sedimentation in colloidal suspensions. Phys Rev Lett 74(8):1478PubMed Allain C, Cloitre M, Wafra M (1995) Aggregation and sedimentation in colloidal suspensions. Phys Rev Lett 74(8):1478PubMed
Zurück zum Zitat Araki J (2013) Electrostatic or steric? Preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9(16):4125–4141 Araki J (2013) Electrostatic or steric? Preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9(16):4125–4141
Zurück zum Zitat Asensio JL, Ardá A, Cañada FJ, Js J-B (2012) Carbohydrate–aromatic interactions. Acc Chem Res 46(4):946–954PubMed Asensio JL, Ardá A, Cañada FJ, Js J-B (2012) Carbohydrate–aromatic interactions. Acc Chem Res 46(4):946–954PubMed
Zurück zum Zitat Bartlett P, Teece LJ, Faers MA (2012) Sudden collapse of a colloidal gel. Phys Rev E 85(2):021404 Bartlett P, Teece LJ, Faers MA (2012) Sudden collapse of a colloidal gel. Phys Rev E 85(2):021404
Zurück zum Zitat Bauer T, Höfling F, Munk T, Frey E, Franosch T (2010) The localization transition of the two-dimensional Lorentz model. Eur Phys J Spec Top 189(1):103–118 Bauer T, Höfling F, Munk T, Frey E, Franosch T (2010) The localization transition of the two-dimensional Lorentz model. Eur Phys J Spec Top 189(1):103–118
Zurück zum Zitat Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054PubMed Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054PubMed
Zurück zum Zitat Benavides EEU (2011) Cellulose nanocrystals properties and applications in renewable nanocomposites. Clemson University Benavides EEU (2011) Cellulose nanocrystals properties and applications in renewable nanocomposites. Clemson University
Zurück zum Zitat Bishop KJ (2015) Nanoscale self-assembly: seeing is understanding. ACS Publications, Washington Bishop KJ (2015) Nanoscale self-assembly: seeing is understanding. ACS Publications, Washington
Zurück zum Zitat Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1–3):297–303 Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1–3):297–303
Zurück zum Zitat Buining PA, Pathmamanoharan C, Jansen JBH, Lekkerkerker HN (1991) Preparation of colloidal boehmite needles by hydrothermal treatment of aluminum alkoxide precursors. J Am Ceram Soc 74(6):1303–1307 Buining PA, Pathmamanoharan C, Jansen JBH, Lekkerkerker HN (1991) Preparation of colloidal boehmite needles by hydrothermal treatment of aluminum alkoxide precursors. J Am Ceram Soc 74(6):1303–1307
Zurück zum Zitat Buscall R, Choudhury TH, Faers MA, Goodwin JW, Luckham PA, Partridge SJ (2009) Towards rationalising collapse times for the delayed sedimentation of weakly-aggregated colloidal gels. Soft Matter 5(7):1345–1349 Buscall R, Choudhury TH, Faers MA, Goodwin JW, Luckham PA, Partridge SJ (2009) Towards rationalising collapse times for the delayed sedimentation of weakly-aggregated colloidal gels. Soft Matter 5(7):1345–1349
Zurück zum Zitat Buzzaccaro S, Secchi E, Brambilla G, Piazza R, Cipelletti L (2012) Equilibrium concentration profiles and sedimentation kinetics of colloidal gels under gravitational stress. J Phys Condens Matter 24(28):284103PubMed Buzzaccaro S, Secchi E, Brambilla G, Piazza R, Cipelletti L (2012) Equilibrium concentration profiles and sedimentation kinetics of colloidal gels under gravitational stress. J Phys Condens Matter 24(28):284103PubMed
Zurück zum Zitat Chau M, Sriskandha SE, Pichugin D, Hl T-A, Nykypanchuk D, Gg C, Méthot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16(8):2455–2462PubMed Chau M, Sriskandha SE, Pichugin D, Hl T-A, Nykypanchuk D, Gg C, Méthot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16(8):2455–2462PubMed
Zurück zum Zitat Chen Y-L, Kobelev V, Schweizer K (2005) Barrier hopping, viscous flow, and kinetic gelation in particle-polymer suspensions. Phys Rev E 71(4):041405 Chen Y-L, Kobelev V, Schweizer K (2005) Barrier hopping, viscous flow, and kinetic gelation in particle-polymer suspensions. Phys Rev E 71(4):041405
Zurück zum Zitat Chen W, Enck S, Price JL, Powers DL, Powers ET, Wong C-H, Dyson HJ, Kelly JW (2013) Structural and energetic basis of carbohydrate–aromatic packing interactions in proteins. J Am Chem Soc 135(26):9877–9884PubMedPubMedCentral Chen W, Enck S, Price JL, Powers DL, Powers ET, Wong C-H, Dyson HJ, Kelly JW (2013) Structural and energetic basis of carbohydrate–aromatic packing interactions in proteins. J Am Chem Soc 135(26):9877–9884PubMedPubMedCentral
Zurück zum Zitat Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos AP (2015) Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent Sci 1(1):33–39PubMedPubMedCentral Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos AP (2015) Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent Sci 1(1):33–39PubMedPubMedCentral
Zurück zum Zitat Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31(20):5596–5602PubMed Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31(20):5596–5602PubMed
Zurück zum Zitat de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18(4):992–996 de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18(4):992–996
Zurück zum Zitat Dhont JK, Briels WJ (2003) Viscoelasticity of suspensions of long, rigid rods. Colloids Surf A 213(2–3):131–156 Dhont JK, Briels WJ (2003) Viscoelasticity of suspensions of long, rigid rods. Colloids Surf A 213(2–3):131–156
Zurück zum Zitat Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32 Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32
Zurück zum Zitat Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113(32):11069–11075PubMed Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113(32):11069–11075PubMed
Zurück zum Zitat Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111(22–23):3345–3362 Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111(22–23):3345–3362
Zurück zum Zitat Gomes TC, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33(14):1338–1346PubMed Gomes TC, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33(14):1338–1346PubMed
Zurück zum Zitat Gopalakrishnan V, Schweizer K, Zukoski C (2006) Linking single particle rearrangements to delayed collapse times in transient depletion gels. J Phys Condens Matter 18(50):11531 Gopalakrishnan V, Schweizer K, Zukoski C (2006) Linking single particle rearrangements to delayed collapse times in transient depletion gels. J Phys Condens Matter 18(50):11531
Zurück zum Zitat Gregory J (1976) The effect of cationic polymers on the colloidal stability of latex particles. J Colloid Interface Sci 55(1):35–44 Gregory J (1976) The effect of cationic polymers on the colloidal stability of latex particles. J Colloid Interface Sci 55(1):35–44
Zurück zum Zitat Hagiwara T, Kumagai H, Nakamura K (1996) Fractal analysis of aggregates formed by heating dilute BSA solutions using light scattering methods. Biosci Biotechnol Biochem 60(11):1757–1763PubMed Hagiwara T, Kumagai H, Nakamura K (1996) Fractal analysis of aggregates formed by heating dilute BSA solutions using light scattering methods. Biosci Biotechnol Biochem 60(11):1757–1763PubMed
Zurück zum Zitat Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402 Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402
Zurück zum Zitat Höfling F, Munk T, Frey E, Franosch T (2008) Critical dynamics of ballistic and Brownian particles in a heterogeneous environment. J Chem Phys 128(16):164517PubMed Höfling F, Munk T, Frey E, Franosch T (2008) Critical dynamics of ballistic and Brownian particles in a heterogeneous environment. J Chem Phys 128(16):164517PubMed
Zurück zum Zitat Honorato-Rios C, Lehr C, Schütz C, Sanctuary R, Osipov MA, Baller J, Lagerwall JP (2018) Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater 10:455–465 Honorato-Rios C, Lehr C, Schütz C, Sanctuary R, Osipov MA, Baller J, Lagerwall JP (2018) Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater 10:455–465
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38
Zurück zum Zitat Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Burlington Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Burlington
Zurück zum Zitat Kamp SW, Kilfoil ML (2009) Universal behaviour in the mechanical properties of weakly aggregated colloidal particles. Soft Matter 5(12):2438–2447 Kamp SW, Kilfoil ML (2009) Universal behaviour in the mechanical properties of weakly aggregated colloidal particles. Soft Matter 5(12):2438–2447
Zurück zum Zitat Kjellander R, Greberg H (1998) Mechanisms behind concentration profiles illustrated by charge and concentration distributions around ions in double layers. J Electroanal Chem 450(2):233–251 Kjellander R, Greberg H (1998) Mechanisms behind concentration profiles illustrated by charge and concentration distributions around ions in double layers. J Electroanal Chem 450(2):233–251
Zurück zum Zitat Kratohvil S, Janauer GE, Matijević E (1969) Coagulation of microcrystalline cellulose dispersions. J Colloid Interface Sci 29(2):187–193PubMed Kratohvil S, Janauer GE, Matijević E (1969) Coagulation of microcrystalline cellulose dispersions. J Colloid Interface Sci 29(2):187–193PubMed
Zurück zum Zitat Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17(8):2747–2754PubMed Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17(8):2747–2754PubMed
Zurück zum Zitat Lindström T, Soremark C (1976) Flocculation of cellulosic dispersions with alginates in the presence of divalent metal ions. J Colloid Interface Sci 55(1):69–72 Lindström T, Soremark C (1976) Flocculation of cellulosic dispersions with alginates in the presence of divalent metal ions. J Colloid Interface Sci 55(1):69–72
Zurück zum Zitat Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E (2010) Step-growth polymerization of inorganic nanoparticles. Science 329(5988):197–200PubMedPubMedCentral Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E (2010) Step-growth polymerization of inorganic nanoparticles. Science 329(5988):197–200PubMedPubMedCentral
Zurück zum Zitat Lorentz HA (2010) Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 248(1):127–136 Lorentz HA (2010) Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 248(1):127–136
Zurück zum Zitat Mohraz A, Moler DB, Ziff RM, Solomon MJ (2004) Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys Rev Lett 92(15):155503PubMed Mohraz A, Moler DB, Ziff RM, Solomon MJ (2004) Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys Rev Lett 92(15):155503PubMed
Zurück zum Zitat Moncho-Jordá A, Martınez-López F, Hidalgo-Alvarez R (2002) The effect of the salt concentration and counterion valence on the aggregation of latex particles at the air/water interface. J Colloid Interface Sci 249(2):405–411PubMed Moncho-Jordá A, Martınez-López F, Hidalgo-Alvarez R (2002) The effect of the salt concentration and counterion valence on the aggregation of latex particles at the air/water interface. J Colloid Interface Sci 249(2):405–411PubMed
Zurück zum Zitat Moud AA, Arjmand M, Yan N, Nezhad AS, Hejazi SH (2018) Colloidal behavior of cellulose nanocrystals in presence of sodium chloride. ChemistrySelect 3(17):4969–4978 Moud AA, Arjmand M, Yan N, Nezhad AS, Hejazi SH (2018) Colloidal behavior of cellulose nanocrystals in presence of sodium chloride. ChemistrySelect 3(17):4969–4978
Zurück zum Zitat Overbeek JTG (1977) Recent developments in the understanding of colloid stability. Plenary and invited lectures. Elsevier, Amsterdam, pp 431–445 Overbeek JTG (1977) Recent developments in the understanding of colloid stability. Plenary and invited lectures. Elsevier, Amsterdam, pp 431–445
Zurück zum Zitat Parker A, Gunning PA, Ng K, Robins MM (1995) How does xanthan stabilise salad dressing? Food Hydrocolloids 9(4):333–342 Parker A, Gunning PA, Ng K, Robins MM (1995) How does xanthan stabilise salad dressing? Food Hydrocolloids 9(4):333–342
Zurück zum Zitat Peddireddy KR, Capron I, Nicolai T, Benyahia L (2016) Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromolecules 17(10):3298–3304PubMed Peddireddy KR, Capron I, Nicolai T, Benyahia L (2016) Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromolecules 17(10):3298–3304PubMed
Zurück zum Zitat Phan-Xuan T, Thuresson A, Skepö M, Labrador A, Bordes R, Matic A (2016) Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts. Cellulose 23(6):3653–3663 Phan-Xuan T, Thuresson A, Skepö M, Labrador A, Bordes R, Matic A (2016) Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts. Cellulose 23(6):3653–3663
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19 Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19
Zurück zum Zitat Poon WC, Starrs L, Meeker S, Moussaid A, Evans RM, Pusey P, Robins M (1999) Delayed sedimentation of transient gels in colloid–polymer mixtures: dark-field observation, rheology and dynamic light scattering studies. Faraday Discuss 112:143–154 Poon WC, Starrs L, Meeker S, Moussaid A, Evans RM, Pusey P, Robins M (1999) Delayed sedimentation of transient gels in colloid–polymer mixtures: dark-field observation, rheology and dynamic light scattering studies. Faraday Discuss 112:143–154
Zurück zum Zitat Potanin A, Russel W (1996) Fractal model of consolidation of weakly aggregated colloidal dispersions. Phys Rev E 53(4):3702 Potanin A, Russel W (1996) Fractal model of consolidation of weakly aggregated colloidal dispersions. Phys Rev E 53(4):3702
Zurück zum Zitat Puertas AM, Fuchs M, Cates ME (2007) Aging in attraction-driven colloidal glasses. Phys Rev E 75(3):031401 Puertas AM, Fuchs M, Cates ME (2007) Aging in attraction-driven colloidal glasses. Phys Rev E 75(3):031401
Zurück zum Zitat Pusey PN, Van Megen W (1989) Dynamic light scattering by non-ergodic media. Physica A 157(2):705–741 Pusey PN, Van Megen W (1989) Dynamic light scattering by non-ergodic media. Physica A 157(2):705–741
Zurück zum Zitat Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164 Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164
Zurück zum Zitat Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134 Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134
Zurück zum Zitat Royall CP, Williams SR, Ohtsuka T, Tanaka H (2008) Direct observation of a local structural mechanism for dynamic arrest. Nat Mater 7(7):556 Royall CP, Williams SR, Ohtsuka T, Tanaka H (2008) Direct observation of a local structural mechanism for dynamic arrest. Nat Mater 7(7):556
Zurück zum Zitat Sano M, Kamino A, Shinkai S (2000) Critical coagulation of langmuir monolayers: 2D Schulze–Hardy rule. J Phys Chem B 104(44):10339–10347 Sano M, Kamino A, Shinkai S (2000) Critical coagulation of langmuir monolayers: 2D Schulze–Hardy rule. J Phys Chem B 104(44):10339–10347
Zurück zum Zitat Sano M, Okamura J, Shinkai S (2001) Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy rule. Langmuir 17(22):7172–7173 Sano M, Okamura J, Shinkai S (2001) Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy rule. Langmuir 17(22):7172–7173
Zurück zum Zitat Schilling T, Jungblut S, Miller MA (2007) Depletion-induced percolation in networks of nanorods. Phys Rev Lett 98(10):108303PubMed Schilling T, Jungblut S, Miller MA (2007) Depletion-induced percolation in networks of nanorods. Phys Rev Lett 98(10):108303PubMed
Zurück zum Zitat Shafiei Sabet S (2013) Shear rheology of cellulose nanocrystal (CNC) aqueous suspensions. University of British Columbia Shafiei Sabet S (2013) Shear rheology of cellulose nanocrystal (CNC) aqueous suspensions. University of British Columbia
Zurück zum Zitat Shafiei-Sabet S, Hamad W, Hatzikiriakos S (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359 Shafiei-Sabet S, Hamad W, Hatzikiriakos S (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359
Zurück zum Zitat Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7):1391–1400 Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7):1391–1400
Zurück zum Zitat Starrs L, Poon W, Hibberd D, Robins M (2002) Collapse of transient gels in colloid-polymer mixtures. J Phys Condens Matter 14(10):2485 Starrs L, Poon W, Hibberd D, Robins M (2002) Collapse of transient gels in colloid-polymer mixtures. J Phys Condens Matter 14(10):2485
Zurück zum Zitat Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16(4):499–508 Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16(4):499–508
Zurück zum Zitat Stover CA, Koch DL, Cohen C (1992) Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296 Stover CA, Koch DL, Cohen C (1992) Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296
Zurück zum Zitat Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116(7):2978–2987 Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116(7):2978–2987
Zurück zum Zitat Teece LJ, Faers MA, Bartlett P (2011) Ageing and collapse in gels with long-range attractions. Soft Matter 7(4):1341–1351 Teece LJ, Faers MA, Bartlett P (2011) Ageing and collapse in gels with long-range attractions. Soft Matter 7(4):1341–1351
Zurück zum Zitat Verhaegh N, Lekkerkerker H (1997) Phase transitions in colloidal suspensions. IOS Press, Amsterdam, pp 347–381 Verhaegh N, Lekkerkerker H (1997) Phase transitions in colloidal suspensions. IOS Press, Amsterdam, pp 347–381
Zurück zum Zitat Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795PubMed Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795PubMed
Zurück zum Zitat Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophoton 6(1):063516 Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophoton 6(1):063516
Zurück zum Zitat Zhang I, Royall CP, Faers MA, Bartlett P (2013) Phase separation dynamics in colloid–polymer mixtures: the effect of interaction range. Soft Matter 9(6):2076–2084 Zhang I, Royall CP, Faers MA, Bartlett P (2013) Phase separation dynamics in colloid–polymer mixtures: the effect of interaction range. Soft Matter 9(6):2076–2084
Zurück zum Zitat Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90(1):644–649PubMed Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90(1):644–649PubMed
Zurück zum Zitat Zia RN, Landrum BJ, Russel WB (2014) A micro-mechanical study of coarsening and rheology of colloidal gels: cage building, cage hopping, and Smoluchowski’s ratchet. J Rheol 58(5):1121–1157 Zia RN, Landrum BJ, Russel WB (2014) A micro-mechanical study of coarsening and rheology of colloidal gels: cage building, cage hopping, and Smoluchowski’s ratchet. J Rheol 58(5):1121–1157
Metadaten
Titel
Cellulose nanocrystal structure in the presence of salts
verfasst von
Aref Abbasi Moud
Mohammad Arjmand
Jie Liu
Yongfei Yang
Amir Sanati-Nezhad
S. Hossein Hejazi
Publikationsdatum
11.09.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 18/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02734-0

Weitere Artikel der Ausgabe 18/2019

Cellulose 18/2019 Zur Ausgabe