Skip to main content
Erschienen in: Cellulose 11/2018

12.09.2018 | Original Paper

Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism

verfasst von: Yuanyuan Yin, Jiajia Ma, Xiuzhi Tian, Xue Jiang, Hongbo Wang, Weidong Gao

Erschienen in: Cellulose | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanocrystals (CNCs) have attracted considerable attention as nanofillers to enhance the crystallization of poly(lactic acid) (PLA) and to improve the mechanical properties of the composites. There are two challenges: the inferior thermostability of CNCs and the compatibility of CNCs and polymeric matrix. Poly(ethylene glycol) epoxide, a compatibilizer and carrier, was grafted on CNC surfaces using γ-aminopropyltriethoxysilane as an intermediate, in order to overcome those two challenges. Thermogravimetry analysis indicated that the initial decomposition temperature of the modified CNCs was increased by approximately 150 °C in comparison with the pure CNCs. Results from SEM and UV–Vis transmittance spectra revealed homogeneous dispersion of the modified CNCs in PLA matrix. Polarizing microscope and differential scanning calorimeter measurement showed the improvement of crystallization property. The stress–strain analysis showed that the strength and elongation at break of the composite were also improved with the addition of modified CNCs. The hydrophobicity of the modified CNCs was characterized with the contact angle measurement, which indicated that the contact angle was increased by 20°. The increase of the initial decomposition temperature of the modified CNCs suggested that the inferior thermostability has been improved, and the improvement of transmittance, crystallization and mechanical properties suggested that the compatibility of CNCs to PLA has been improved. The two challenges, the inferior thermostability and compatibility to PLA of CNCs has been improved with the functionalization with amino-silane and epoxy-poly(ethylene glycol).

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095CrossRefPubMed Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095CrossRefPubMed
Zurück zum Zitat Azouz KB, Ramires EC, Fonteyne WVD, Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240CrossRefPubMed Azouz KB, Ramires EC, Fonteyne WVD, Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240CrossRefPubMed
Zurück zum Zitat Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:1–18CrossRef Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:1–18CrossRef
Zurück zum Zitat Börjesson M, Sahlin K, Bernin D, Westman G (2018) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135(10):45963–45969CrossRef Börjesson M, Sahlin K, Bernin D, Westman G (2018) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135(10):45963–45969CrossRef
Zurück zum Zitat Chen J, Wu D, Tam KC, Pan K, Zheng Z (2017a) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohyd Polym 157:1821–1829CrossRef Chen J, Wu D, Tam KC, Pan K, Zheng Z (2017a) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohyd Polym 157:1821–1829CrossRef
Zurück zum Zitat Chen Y, Xu C, Huang J, Wu D, Lv Q (2017b) Rheological properties of nanocrystalline cellulose suspensions. Carbohyd Polym 157:303–310CrossRef Chen Y, Xu C, Huang J, Wu D, Lv Q (2017b) Rheological properties of nanocrystalline cellulose suspensions. Carbohyd Polym 157:303–310CrossRef
Zurück zum Zitat D’Eon J, Zhang W, Chen L, Berry RM, Zhao B (2017) Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties. Cellulose 24(4):1–12CrossRef D’Eon J, Zhang W, Chen L, Berry RM, Zhao B (2017) Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties. Cellulose 24(4):1–12CrossRef
Zurück zum Zitat Ding M, Li C, Chen F (2017) Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA. Cellulose 24(11):4785–4792CrossRef Ding M, Li C, Chen F (2017) Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA. Cellulose 24(11):4785–4792CrossRef
Zurück zum Zitat Fernandes SCM, Sadocco P, Causio J, Silvestre AJD, Mondragon I, Freire CSR (2014) Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: characterization and ability to form transparent films. Food Hydrocolloids 35(3):247–252CrossRef Fernandes SCM, Sadocco P, Causio J, Silvestre AJD, Mondragon I, Freire CSR (2014) Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: characterization and ability to form transparent films. Food Hydrocolloids 35(3):247–252CrossRef
Zurück zum Zitat Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd Polym 91(1):377–384CrossRef Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd Polym 91(1):377–384CrossRef
Zurück zum Zitat Gazzotti S, Fatina H, Lesma G, Rampazzo R, Piergiovanni L, Ortenzi MA, Silvani A (2017) Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites. Eur Polymer J 94:173–184CrossRef Gazzotti S, Fatina H, Lesma G, Rampazzo R, Piergiovanni L, Ortenzi MA, Silvani A (2017) Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites. Eur Polymer J 94:173–184CrossRef
Zurück zum Zitat Ghasemi H, Carreau PJ, Kamal MR (2012) Isothermal and non-isothermal crystallization behavior of PET nanocomposites. Polym Eng Sci 52(2):372–384CrossRef Ghasemi H, Carreau PJ, Kamal MR (2012) Isothermal and non-isothermal crystallization behavior of PET nanocomposites. Polym Eng Sci 52(2):372–384CrossRef
Zurück zum Zitat Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain Chem Eng 5(2):1711–1720CrossRef Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain Chem Eng 5(2):1711–1720CrossRef
Zurück zum Zitat Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromol 9(7):1974–1980CrossRef Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromol 9(7):1974–1980CrossRef
Zurück zum Zitat Han N, Li Z, Zhang X, Yu W, Chen X, Wang D, Li J (2016) Synthesis and characterization of cellulose-g-polyoxyethylene (2) hexadecyl ether solid–solid phase change materials. Cellulose 23(3):1663–1674CrossRef Han N, Li Z, Zhang X, Yu W, Chen X, Wang D, Li J (2016) Synthesis and characterization of cellulose-g-polyoxyethylene (2) hexadecyl ether solid–solid phase change materials. Cellulose 23(3):1663–1674CrossRef
Zurück zum Zitat Haque MU, Puglia D, Fortunati E, Pracella M (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9CrossRef Haque MU, Puglia D, Fortunati E, Pracella M (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9CrossRef
Zurück zum Zitat Hatton FL, Kedzior SA, Cranston ED, Carlmark A (2017) Grafting-from cellulose nanocrystals via photoinduced cu-mediated reversible-deactivation radical polymerization. Carbohyd Polym 157:1033–1040CrossRef Hatton FL, Kedzior SA, Cranston ED, Carlmark A (2017) Grafting-from cellulose nanocrystals via photoinduced cu-mediated reversible-deactivation radical polymerization. Carbohyd Polym 157:1033–1040CrossRef
Zurück zum Zitat Jahan Z, Niazi MBK, Gregersen ØW (2017) Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J Ind Eng Chem 57:113–124CrossRef Jahan Z, Niazi MBK, Gregersen ØW (2017) Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J Ind Eng Chem 57:113–124CrossRef
Zurück zum Zitat Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym Compos 32(11):1689–1700CrossRef Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym Compos 32(11):1689–1700CrossRef
Zurück zum Zitat Jiang G, Zhang M, Feng J, Zhang S, Wang X (2017) High oxygen barrier property of poly(propylene carbonate)/polyethylene glycol nanocomposites with low loading of cellulose nanocrytal. ACS Sustainable Chemistry & Engineering 5:11246–11254CrossRef Jiang G, Zhang M, Feng J, Zhang S, Wang X (2017) High oxygen barrier property of poly(propylene carbonate)/polyethylene glycol nanocomposites with low loading of cellulose nanocrytal. ACS Sustainable Chemistry & Engineering 5:11246–11254CrossRef
Zurück zum Zitat Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohyd Polym 123:105–114CrossRef Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohyd Polym 123:105–114CrossRef
Zurück zum Zitat Kimura F, KimuraT TamuraM, HiraiA IkunoM, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21(5):2034–2037CrossRefPubMed Kimura F, KimuraT TamuraM, HiraiA IkunoM, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21(5):2034–2037CrossRefPubMed
Zurück zum Zitat Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456CrossRefPubMed Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456CrossRefPubMed
Zurück zum Zitat Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A Appl Sci Manuf 42(10):1509–1514CrossRef Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A Appl Sci Manuf 42(10):1509–1514CrossRef
Zurück zum Zitat Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46(14):5570–5583CrossRef Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46(14):5570–5583CrossRef
Zurück zum Zitat Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3500CrossRefPubMed Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3500CrossRefPubMed
Zurück zum Zitat Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohyd Polym 142:105–113CrossRef Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohyd Polym 142:105–113CrossRef
Zurück zum Zitat Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos B Eng 51(51):28–34CrossRef Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos B Eng 51(51):28–34CrossRef
Zurück zum Zitat Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef
Zurück zum Zitat Muiruri JK, Liu S, Teo WS, Kong J, He C (2017) Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite. ACS Sustain Chem Eng 5(5):3929–3937CrossRef Muiruri JK, Liu S, Teo WS, Kong J, He C (2017) Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite. ACS Sustain Chem Eng 5(5):3929–3937CrossRef
Zurück zum Zitat Nan F, Nagarajan S, Chen Y, Liu P, Duan Y, Men Y, Zhang J (2017) Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment. ACS Sustain Chem Eng 5(10):8951–8958CrossRef Nan F, Nagarajan S, Chen Y, Liu P, Duan Y, Men Y, Zhang J (2017) Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment. ACS Sustain Chem Eng 5(10):8951–8958CrossRef
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340(3):417–428CrossRef Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340(3):417–428CrossRef
Zurück zum Zitat Oun AA, Rhim JW (2015) Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohyd Polym 134:20–29CrossRef Oun AA, Rhim JW (2015) Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohyd Polym 134:20–29CrossRef
Zurück zum Zitat Pereda M, El KN, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6(12):9365–9375CrossRefPubMed Pereda M, El KN, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6(12):9365–9375CrossRefPubMed
Zurück zum Zitat Pracella M, Haque MU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55(16):3720–3728CrossRef Pracella M, Haque MU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55(16):3720–3728CrossRef
Zurück zum Zitat Pracella M, Haque MM, Paci M, Alvarez V (2016) Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer. Carbohyd Polym 137:515–524CrossRef Pracella M, Haque MM, Paci M, Alvarez V (2016) Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer. Carbohyd Polym 137:515–524CrossRef
Zurück zum Zitat Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113(2):927–935CrossRef Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113(2):927–935CrossRef
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5(5):1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5(5):1671–1677CrossRef
Zurück zum Zitat Scaffaro R, Botta L, Lopresti F, Maio A, Sutera F (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24(2):447–478CrossRef Scaffaro R, Botta L, Lopresti F, Maio A, Sutera F (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24(2):447–478CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE Jr, Conrad CM (2016) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal L, Creely JJ, Martin AE Jr, Conrad CM (2016) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
Zurück zum Zitat Shensiung W, Stefan K, Tan YM (2009) Bacterial and plant cellulose modification using ultrasound irradiation. Carbohyd Polym 77(2):280–287CrossRef Shensiung W, Stefan K, Tan YM (2009) Bacterial and plant cellulose modification using ultrasound irradiation. Carbohyd Polym 77(2):280–287CrossRef
Zurück zum Zitat Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192CrossRef Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192CrossRef
Zurück zum Zitat Tan Y, Liu Y, Chen W, Liu Y, Wang Q, Li J, Yu H (2016) Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain Chem Eng 4(7):3766–3772CrossRef Tan Y, Liu Y, Chen W, Liu Y, Wang Q, Li J, Yu H (2016) Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain Chem Eng 4(7):3766–3772CrossRef
Zurück zum Zitat Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. Biomacromol 13(5):1584–1591CrossRef Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. Biomacromol 13(5):1584–1591CrossRef
Zurück zum Zitat Wang H, He J, Zhang M, Tam KC, Ni P (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6(23):4206–4209CrossRef Wang H, He J, Zhang M, Tam KC, Ni P (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6(23):4206–4209CrossRef
Zurück zum Zitat Wang Y, Xu C, Wu D, Xie W, Wang K, Xia Q, Yang H (2018) Rheology of the cellulose nanocrystals filled poly(-caprolactone) biocomposites. Polymer 140:167–178CrossRef Wang Y, Xu C, Wu D, Xie W, Wang K, Xia Q, Yang H (2018) Rheology of the cellulose nanocrystals filled poly(-caprolactone) biocomposites. Polymer 140:167–178CrossRef
Zurück zum Zitat Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci, Part B: Polym Phys 45(9):1100–1113CrossRef Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci, Part B: Polym Phys 45(9):1100–1113CrossRef
Zurück zum Zitat Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41(7):806–819CrossRef Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41(7):806–819CrossRef
Zurück zum Zitat Xu C, Lv Q, Wu D, Wang Z (2017) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24(5):2163–2175CrossRef Xu C, Lv Q, Wu D, Wang Z (2017) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24(5):2163–2175CrossRef
Zurück zum Zitat Yang Q, Pan X (2010) A facile approach for fabricating fluorescent cellulose. J Appl Polym Sci 117(6):3639–3644 Yang Q, Pan X (2010) A facile approach for fabricating fluorescent cellulose. J Appl Polym Sci 117(6):3639–3644
Zurück zum Zitat Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohyd Polym 142:206–212CrossRef Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohyd Polym 142:206–212CrossRef
Zurück zum Zitat Yin Y, Hong Z, Tian X, Zhu Q, Jiang X, Wang H, Gao W (2017a) Cellulose nanocrystals modified with quaternary ammonium salts and its reinforcement of polystyrene. Polym Bull 2:1–16 Yin Y, Hong Z, Tian X, Zhu Q, Jiang X, Wang H, Gao W (2017a) Cellulose nanocrystals modified with quaternary ammonium salts and its reinforcement of polystyrene. Polym Bull 2:1–16
Zurück zum Zitat Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017b) Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24:4773–4784CrossRef Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017b) Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24:4773–4784CrossRef
Zurück zum Zitat Ying Z, Wu D, Wang Z, Xie W, Qiu Y, Wei X (2018) Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 25(7):3955–3971CrossRef Ying Z, Wu D, Wang Z, Xie W, Qiu Y, Wei X (2018) Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 25(7):3955–3971CrossRef
Zurück zum Zitat Zhang L, Shi H, Li W, Han X, Zhang X (2013a) Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials. Thermochim Acta 570(9):1–7CrossRef Zhang L, Shi H, Li W, Han X, Zhang X (2013a) Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials. Thermochim Acta 570(9):1–7CrossRef
Zurück zum Zitat Zhang Y, Li H, Li X, Gibril ME, Han K, Yu M (2013b) Green chemical preparation of cellulose/high performance elastomer blend fibers by melt-spinning method. J Polym Res 20(6):171–179CrossRef Zhang Y, Li H, Li X, Gibril ME, Han K, Yu M (2013b) Green chemical preparation of cellulose/high performance elastomer blend fibers by melt-spinning method. J Polym Res 20(6):171–179CrossRef
Zurück zum Zitat Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng, C 49(39):463–471CrossRef Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng, C 49(39):463–471CrossRef
Zurück zum Zitat Zhang P, Gao D, Zou P, Wang B (2016) Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly(lactic acid) nanocomposites. J Appl Polym Sci 134:44683–44691 Zhang P, Gao D, Zou P, Wang B (2016) Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly(lactic acid) nanocomposites. J Appl Polym Sci 134:44683–44691
Zurück zum Zitat Zhao W, Li X, Gao S, Feng Y, Huang J (2017) Understanding mechanical characteristics of cellulose nanocrystals reinforced PHEMA nanocomposite hydrogel: in aqueous cyclic test. Cellulose 24(5):2095–2110CrossRef Zhao W, Li X, Gao S, Feng Y, Huang J (2017) Understanding mechanical characteristics of cellulose nanocrystals reinforced PHEMA nanocomposite hydrogel: in aqueous cyclic test. Cellulose 24(5):2095–2110CrossRef
Zurück zum Zitat Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5(9):3847–3854CrossRefPubMed Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5(9):3847–3854CrossRefPubMed
Zurück zum Zitat Zhou L, He H, Jiang C, Ma L, Yu P (2017) Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellul Chem Technol 51:109–119 Zhou L, He H, Jiang C, Ma L, Yu P (2017) Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellul Chem Technol 51:109–119
Metadaten
Titel
Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism
verfasst von
Yuanyuan Yin
Jiajia Ma
Xiuzhi Tian
Xue Jiang
Hongbo Wang
Weidong Gao
Publikationsdatum
12.09.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 11/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2033-7

Weitere Artikel der Ausgabe 11/2018

Cellulose 11/2018 Zur Ausgabe