Skip to main content
Erschienen in: Cellulose 3/2008

01.06.2008

Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter?

verfasst von: Omar A. El Seoud, Ludmila C. Fidale, Naiara Ruiz, Maria Luiza O. D’Almeida, Elisabete Frollini

Erschienen in: Cellulose | Ausgabe 3/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The question posed in the title has been addressed by studying the swelling of celluloses at 20 °C by twenty protic solvents, including water; linear- and branched-chain aliphatic alcohols; unsaturated aliphatic alcohols, and alkoxyalcohols. The biopolymers investigated included microcrystalline cellulose, MC, native and never-dried mercerized cotton cellulose, cotton and M-cotton, and native and never-dried mercerized eucalyptus cellulose, eucalyptus and M-eucalyptus, respectively. In most cases, better correlations with the physico-chemical properties of the solvents were obtained when the swelling was expressed as number of moles of solvent/anhydroglucose unit, nSw, rather than as % increase in sample weight. The descriptors employed in these correlations included, where available, Hildebrand’s solubility parameters, Gutmann’s acceptor and donor numbers, solvent molar volume, VS, as well as solvatochromic parameters. The latter, employed for the first time for correlating the swelling of biopolymers, included empirical solvent polarity, ET(30), solvent “acidity”, αS, “basicity”, βS, and dipolarity/polarizability, π S * , respectively. Small regression coefficients and large sums of the squares of the residues were obtained when values of nSw were correlated with two solvent parameters. Much better correlations were obtained with three solvent parameters. The most statistically significant descriptor in the correlation equation depends on the cellulose, being π S * for MC, cotton, and eucalyptus, and VS for M-cotton and M-eucalyptus. The best correlations were obtained with the same set of four parameters for all celluloses, namely, solvent pKa (or αS) βS, π S * , and VS, respectively. These results indicate that the supra-molecular structure of the biopolymer, in particular the average sizes of crystallites and micro-pores, and the presence of its chains in parallel (cellulose I) or anti-parallel (cellulose II) arrangements control its swelling. At least for the present biopolymer/solvent systems, use of solvatochromic parameters is a superior alternative to Hildebrand’s solubility parameters and/or Gutmann’s acceptor and donor numbers. The relevance of these results to the accessibility of the hydroxyl groups of cellulose, hence to its reactivity, is briefly discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abraham MH, Grellier PL, Abboud J-LM, Doherty RM, Taft RW (1988) Solvent effects in organic-chemistry - recent developments. Can J Chem Revue Can Chim 66:2673–2686CrossRef Abraham MH, Grellier PL, Abboud J-LM, Doherty RM, Taft RW (1988) Solvent effects in organic-chemistry - recent developments. Can J Chem Revue Can Chim 66:2673–2686CrossRef
Zurück zum Zitat Aithai US, Tejraj M, Aminabhavi TM (1990) Diffusivity, permeability, and sorptivity of aliphatic alcohols through polyurethane membrane at 25, 44, and 60 °C. J Chem Eng Data 35:298–303CrossRef Aithai US, Tejraj M, Aminabhavi TM (1990) Diffusivity, permeability, and sorptivity of aliphatic alcohols through polyurethane membrane at 25, 44, and 60 °C. J Chem Eng Data 35:298–303CrossRef
Zurück zum Zitat Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals. Elsevier, New York Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals. Elsevier, New York
Zurück zum Zitat ASTM D1795-94 (2001) Standard test methods for intrinsics viscosity of cellulose ASTM D1795-94 (2001) Standard test methods for intrinsics viscosity of cellulose
Zurück zum Zitat Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306CrossRef Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306CrossRef
Zurück zum Zitat Barton AFM (1991) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton Barton AFM (1991) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton
Zurück zum Zitat Boluk Y (2005) Acid-base interactions and swelling of cellulose fibers in organic liquids. Cellulose 12:577–593CrossRef Boluk Y (2005) Acid-base interactions and swelling of cellulose fibers in organic liquids. Cellulose 12:577–593CrossRef
Zurück zum Zitat Boyd SL, Boyd RJ (2007) A density functional study of methanol clusters. J Chem Theory Comput 3:54–61CrossRef Boyd SL, Boyd RJ (2007) A density functional study of methanol clusters. J Chem Theory Comput 3:54–61CrossRef
Zurück zum Zitat Brinkley RL, Gupta RB (1998) Intra- and Intermolecular hydrogen bonding of 2-methoxyethanol and 2-butoxyethanol in n-hexane. Ind Eng Chem Res 37:4823–4827CrossRef Brinkley RL, Gupta RB (1998) Intra- and Intermolecular hydrogen bonding of 2-methoxyethanol and 2-butoxyethanol in n-hexane. Ind Eng Chem Res 37:4823–4827CrossRef
Zurück zum Zitat Browning BL (1967) Methods of wood chemistry. John Wiley, New York Browning BL (1967) Methods of wood chemistry. John Wiley, New York
Zurück zum Zitat Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef
Zurück zum Zitat Brunauer S, Deming LS, Deming WS (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRef Brunauer S, Deming LS, Deming WS (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRef
Zurück zum Zitat Buschlediller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibres. J Appl Polym Sci 45:967–979CrossRef Buschlediller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibres. J Appl Polym Sci 45:967–979CrossRef
Zurück zum Zitat Cheong WJ, Carr PW (1988) Kamlet-Taft pi-star polarizability dipolarity of mixtures of water with various organic-solvents. Anal Chem 60:820–826CrossRef Cheong WJ, Carr PW (1988) Kamlet-Taft pi-star polarizability dipolarity of mixtures of water with various organic-solvents. Anal Chem 60:820–826CrossRef
Zurück zum Zitat Chitumbo K, Brown W, Deruvo A (1974) Swelling of cellulosic gels. J Polym Sci Part C Polym Symp 261–268 Chitumbo K, Brown W, Deruvo A (1974) Swelling of cellulosic gels. J Polym Sci Part C Polym Symp 261–268
Zurück zum Zitat Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230CrossRef Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230CrossRef
Zurück zum Zitat Creely JJ, Wade RH (1978) Complexes of cellulose with sterically hindered amines. J Polym Sci Part C Polym Lett 16:477–480 Creely JJ, Wade RH (1978) Complexes of cellulose with sterically hindered amines. J Polym Sci Part C Polym Lett 16:477–480
Zurück zum Zitat Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose part 1: Free floating cotton and wood fibres in N-methylmorpholine-N-oxide-water mixtures. Macromol Symp 244:1–18CrossRef Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose part 1: Free floating cotton and wood fibres in N-methylmorpholine-N-oxide-water mixtures. Macromol Symp 244:1–18CrossRef
Zurück zum Zitat Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose part II: Free floating cotton and wood fibres in NaOH-Water additives systems. Macromol Symp 244:19–30CrossRef Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose part II: Free floating cotton and wood fibres in NaOH-Water additives systems. Macromol Symp 244:19–30CrossRef
Zurück zum Zitat Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-Ray studies of reactions of cellulose in non-aqueous systems II Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299CrossRef Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-Ray studies of reactions of cellulose in non-aqueous systems II Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299CrossRef
Zurück zum Zitat Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18CrossRef Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18CrossRef
Zurück zum Zitat El Seoud OA, Regiani AM, Frollini E (2000a) In: Natural polymers and agrofibers composites; USP-UNESP-EMBRAPA: Brazil El Seoud OA, Regiani AM, Frollini E (2000a) In: Natural polymers and agrofibers composites; USP-UNESP-EMBRAPA: Brazil
Zurück zum Zitat El Seoud OA, Marson GA, Giacco GT, Frollini E (2000b) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889CrossRef El Seoud OA, Marson GA, Giacco GT, Frollini E (2000b) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889CrossRef
Zurück zum Zitat El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Springer-Verlag, Heidelberg El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Springer-Verlag, Heidelberg
Zurück zum Zitat Frange B, Abboud J-LM, Benamou C, Bellon L (1982) A quantitative study of structural effects on the self-association of alcohols. J Org Chem 47:4553–4557CrossRef Frange B, Abboud J-LM, Benamou C, Bellon L (1982) A quantitative study of structural effects on the self-association of alcohols. J Org Chem 47:4553–4557CrossRef
Zurück zum Zitat Gardner KH, Blackwell J (1974) Structure of native cellulose. Biopolymers 13:1975–2001CrossRef Gardner KH, Blackwell J (1974) Structure of native cellulose. Biopolymers 13:1975–2001CrossRef
Zurück zum Zitat Grulke EA (1989) Polymer handbook solubility parameter values. Wiley, New York Grulke EA (1989) Polymer handbook solubility parameter values. Wiley, New York
Zurück zum Zitat Gutmann V (1978) The donor-acceptor approach to molecular interaction. Plenum Press, New York Gutmann V (1978) The donor-acceptor approach to molecular interaction. Plenum Press, New York
Zurück zum Zitat Hansch C, Hoekman D, Leo A (1995) Exploring QSAR: hydrophobic, eletronic and steric constants. ACS, Washington Hansch C, Hoekman D, Leo A (1995) Exploring QSAR: hydrophobic, eletronic and steric constants. ACS, Washington
Zurück zum Zitat Hansen CM (2004) 50 Years with solubility parameters - past and future. Prog Org Coat 51:77–84CrossRef Hansen CM (2004) 50 Years with solubility parameters - past and future. Prog Org Coat 51:77–84CrossRef
Zurück zum Zitat Head-Gordon T, Hura G (2002) Water structure from scattering experiments and simulation. Chem Rev 102:2651-2669CrossRef Head-Gordon T, Hura G (2002) Water structure from scattering experiments and simulation. Chem Rev 102:2651-2669CrossRef
Zurück zum Zitat Hill T, Lewicki P (2006) Statics methods and applications: a comprehensive reference for science, industry and data mining. StatSoft, Tulsa Hill T, Lewicki P (2006) Statics methods and applications: a comprehensive reference for science, industry and data mining. StatSoft, Tulsa
Zurück zum Zitat Humeres E, Mascayano C, Riadi G, Gonzalez-Nilo F (2006) Molecular dynamics simulation of the aqueous solvation shell of cellulose and xanthate ester derivatives. J Phys Org Chem 19:896–901CrossRef Humeres E, Mascayano C, Riadi G, Gonzalez-Nilo F (2006) Molecular dynamics simulation of the aqueous solvation shell of cellulose and xanthate ester derivatives. J Phys Org Chem 19:896–901CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef
Zurück zum Zitat Jonquières A, Roizard D, Lochon P (1994) Use of empirical polarity parameters to describe polymer/liquid interactions: Correlation of polymer swelling with solvent polarity in binary and ternary systems. J Appl Polym Sci 54:1673–1684CrossRef Jonquières A, Roizard D, Lochon P (1994) Use of empirical polarity parameters to describe polymer/liquid interactions: Correlation of polymer swelling with solvent polarity in binary and ternary systems. J Appl Polym Sci 54:1673–1684CrossRef
Zurück zum Zitat Kamlet MJ, Taft RW (1976) Solvatochromic comparison method 1 β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383CrossRef Kamlet MJ, Taft RW (1976) Solvatochromic comparison method 1 β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383CrossRef
Zurück zum Zitat Kamlet MJ, Hall TN, Boykin J, Taft RW (1979) Linear solvation energy relationships 6 Additions to and correlations with the π* scale of solvent polarities. J Org Chem 44:2599–2604CrossRef Kamlet MJ, Hall TN, Boykin J, Taft RW (1979) Linear solvation energy relationships 6 Additions to and correlations with the π* scale of solvent polarities. J Org Chem 44:2599–2604CrossRef
Zurück zum Zitat Kamlet M, Abboud J-LM, Taft RW (1981) An examination of linear solvation energy relationships. Prog Phys Org Chem 13:485–630CrossRef Kamlet M, Abboud J-LM, Taft RW (1981) An examination of linear solvation energy relationships. Prog Phys Org Chem 13:485–630CrossRef
Zurück zum Zitat Kamlet MJ, Abboud J-LM, Abraham MH, Taft RW (1983) Linear solvation energy relationships 23 A comprehensive collection of the solvatochromic parameters, π*, α and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887CrossRef Kamlet MJ, Abboud J-LM, Abraham MH, Taft RW (1983) Linear solvation energy relationships 23 A comprehensive collection of the solvatochromic parameters, π*, α and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887CrossRef
Zurück zum Zitat Kamlet MJ, Abraham MH, Doherty RM, Taft RW (1984) Solubility properties in polymers and biological media 4 correlation of octanol water partition-coefficients with solvatochromic parameters. J Am Chem Soc 106:464–466CrossRef Kamlet MJ, Abraham MH, Doherty RM, Taft RW (1984) Solubility properties in polymers and biological media 4 correlation of octanol water partition-coefficients with solvatochromic parameters. J Am Chem Soc 106:464–466CrossRef
Zurück zum Zitat Katritzky AR, Fara DC, Yang HF, Tamm K, Tamm T, Karelson M (2004) Quantitative measures of solvent polarity. Chem Rev 104:175–198CrossRef Katritzky AR, Fara DC, Yang HF, Tamm K, Tamm T, Karelson M (2004) Quantitative measures of solvent polarity. Chem Rev 104:175–198CrossRef
Zurück zum Zitat Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley-VCH, Weinheim Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley-VCH, Weinheim
Zurück zum Zitat Kolpak FJ, Blackwell J (1976) Determination of structure of cellulose II. Macromolecules 9:273–278CrossRef Kolpak FJ, Blackwell J (1976) Determination of structure of cellulose II. Macromolecules 9:273–278CrossRef
Zurück zum Zitat Krässig HA (1996) Cellulose−structure, accessibility and reactivity. Polymer Monographs, Amsterdam Krässig HA (1996) Cellulose−structure, accessibility and reactivity. Polymer Monographs, Amsterdam
Zurück zum Zitat Krygowski TM, Radomski JP, Rzeszowiak A, Wrona PK, Reichardt C (1981) An empirical relationship between the eluant strength parameter ɛ° and solvent Lewis acidity and basicity. Tetrahedron 37:119–125CrossRef Krygowski TM, Radomski JP, Rzeszowiak A, Wrona PK, Reichardt C (1981) An empirical relationship between the eluant strength parameter ɛ° and solvent Lewis acidity and basicity. Tetrahedron 37:119–125CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2:410–416CrossRef
Zurück zum Zitat Laurence C, Nicolet P, Dalati MT, Abboud J-LM, Notario R (1994) The empirical treatment of solvent solute interactions - 15 years of π*. J Phys Chem 98:5807–5816CrossRef Laurence C, Nicolet P, Dalati MT, Abboud J-LM, Notario R (1994) The empirical treatment of solvent solute interactions - 15 years of π*. J Phys Chem 98:5807–5816CrossRef
Zurück zum Zitat Leo AJ, Hansch C (1999) Role of hydrophobic effects in mechanistic QSAR. Persp. Drug Disc Des 17:1–25CrossRef Leo AJ, Hansch C (1999) Role of hydrophobic effects in mechanistic QSAR. Persp. Drug Disc Des 17:1–25CrossRef
Zurück zum Zitat Leroux B, Bizot H, Brandy JW, Tran V (1997) Water structuring around complex solutes: theoretical modeling of α-D-glucopyranose. Chem Phys 216:349–363CrossRef Leroux B, Bizot H, Brandy JW, Tran V (1997) Water structuring around complex solutes: theoretical modeling of α-D-glucopyranose. Chem Phys 216:349–363CrossRef
Zurück zum Zitat Lide DR (2004–2005) CRC Handbook of chemistry and physics. 85th edn. CRC Press, Boca Raton Lide DR (2004–2005) CRC Handbook of chemistry and physics. 85th edn. CRC Press, Boca Raton
Zurück zum Zitat Lowell S, Shields JE (1991) Powder surface area and porosity. Chapman and Hall, London Lowell S, Shields JE (1991) Powder surface area and porosity. Chapman and Hall, London
Zurück zum Zitat Makita RG, Turovsky AA, Zaikov GE (2004) Correlation analysis in chemistry of solutions. Brill Academic Publishers, Utrecht Makita RG, Turovsky AA, Zaikov GE (2004) Correlation analysis in chemistry of solutions. Brill Academic Publishers, Utrecht
Zurück zum Zitat Manjunath BR, Venkataraman A (1980) Fibrillar aggregation in cotton cellulose subjected to multiple swelling treatments with alkali. J Polym Sci Part A Polym Chem 18:1407–1424 Manjunath BR, Venkataraman A (1980) Fibrillar aggregation in cotton cellulose subjected to multiple swelling treatments with alkali. J Polym Sci Part A Polym Chem 18:1407–1424
Zurück zum Zitat Mantanis GI, Young RA, Rowell RM (1994a) Swelling of wood 1 Swelling in water. Wood Sci Technol 28:119–134CrossRef Mantanis GI, Young RA, Rowell RM (1994a) Swelling of wood 1 Swelling in water. Wood Sci Technol 28:119–134CrossRef
Zurück zum Zitat Mantanis GI, Young RA, Rowell RM (1994b) Swelling of wood 2 swelling in organic liquids. Holzforschung 48:480-490CrossRef Mantanis GI, Young RA, Rowell RM (1994b) Swelling of wood 2 swelling in organic liquids. Holzforschung 48:480-490CrossRef
Zurück zum Zitat Mantanis GI, Young RA, Rowell RM, (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22 Mantanis GI, Young RA, Rowell RM, (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22
Zurück zum Zitat Marcus Y (1991) The effectiveness of solvents as hydrogen-bond donors. J Solut Chem 20:929-944CrossRef Marcus Y (1991) The effectiveness of solvents as hydrogen-bond donors. J Solut Chem 20:929-944CrossRef
Zurück zum Zitat Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22:409–416CrossRef Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22:409–416CrossRef
Zurück zum Zitat Martins CT, Lima MS, El Seoud OA (2006) Thermosolvatochromism of merocyanine polarity indicators in pure and aqueous solvents: relevance of solvent lipophilicity. J Org Chem 71:9068–9079CrossRef Martins CT, Lima MS, El Seoud OA (2006) Thermosolvatochromism of merocyanine polarity indicators in pure and aqueous solvents: relevance of solvent lipophilicity. J Org Chem 71:9068–9079CrossRef
Zurück zum Zitat Ni YG, van Heiningen ARP (1997) The swelling of pulp fibers derived from the ethanol-based organosolv process. Tappi 80:211–213 Ni YG, van Heiningen ARP (1997) The swelling of pulp fibers derived from the ethanol-based organosolv process. Tappi 80:211–213
Zurück zum Zitat Nicolet P, Laurence C (1986) Polarity and basicity of solvents 1 a thermosolvatochromic comparison method. J Chem Soc Perkin Trans 2:1071–1079 Nicolet P, Laurence C (1986) Polarity and basicity of solvents 1 a thermosolvatochromic comparison method. J Chem Soc Perkin Trans 2:1071–1079
Zurück zum Zitat Nishimura H, Sarko A (1987) Mercerization of cellulose 4 mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874CrossRef Nishimura H, Sarko A (1987) Mercerization of cellulose 4 mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874CrossRef
Zurück zum Zitat Northolt MG, Devries H (1985) Tensile deformation of regenerated and native cellulose fibers. Angew Makromol Chem 133:183–203CrossRef Northolt MG, Devries H (1985) Tensile deformation of regenerated and native cellulose fibers. Angew Makromol Chem 133:183–203CrossRef
Zurück zum Zitat Northolt MG, Vanderhout R (1985) Elastic extension of an oriented crystalline fiber. Polymer 26:310–316CrossRef Northolt MG, Vanderhout R (1985) Elastic extension of an oriented crystalline fiber. Polymer 26:310–316CrossRef
Zurück zum Zitat Park JH, Jang MD, Kim DS, Carr PW (1990) Solvatochromic hydrogen-bond donor acidity of aqueous binary solvent mixtures for reversed-phase liquid-chromatography. J Chromatogr 513:107–116CrossRef Park JH, Jang MD, Kim DS, Carr PW (1990) Solvatochromic hydrogen-bond donor acidity of aqueous binary solvent mixtures for reversed-phase liquid-chromatography. J Chromatogr 513:107–116CrossRef
Zurück zum Zitat Park S, Venditti RA, Jameel H, Pawlak JJ (2006a) Hard to remove water in cellulose fibers characterized by high resolution thermogravimetric analysis-methods development. Cellulose 13:23–30CrossRef Park S, Venditti RA, Jameel H, Pawlak JJ (2006a) Hard to remove water in cellulose fibers characterized by high resolution thermogravimetric analysis-methods development. Cellulose 13:23–30CrossRef
Zurück zum Zitat Park S, Venditti RA, Jameela H, Pawlaka JJ (2006b) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103CrossRef Park S, Venditti RA, Jameela H, Pawlaka JJ (2006b) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103CrossRef
Zurück zum Zitat Philipp B, Schleicher H, Wagenknecht W (1973) The influence of cellulose structure on the swelling of cellulose in organic liquids. J Polym Sci Part C Polym Symp 42:1531–1543CrossRef Philipp B, Schleicher H, Wagenknecht W (1973) The influence of cellulose structure on the swelling of cellulose in organic liquids. J Polym Sci Part C Polym Symp 42:1531–1543CrossRef
Zurück zum Zitat Porter BR, Rollins ML (1972) Changes in porosity of treated lint cotton fibers. I- Purification and swelling treatments. J Appl Polym Sci 16:217–236CrossRef Porter BR, Rollins ML (1972) Changes in porosity of treated lint cotton fibers. I- Purification and swelling treatments. J Appl Polym Sci 16:217–236CrossRef
Zurück zum Zitat Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647CrossRef Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647CrossRef
Zurück zum Zitat Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OA (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A Polym Chem 37:1357–1363CrossRef Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OA (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A Polym Chem 37:1357–1363CrossRef
Zurück zum Zitat Reichardt C (2003) Solvents and solvent effects in organic chemistry 3rd edn. Wiley-VCH, Weinheim Reichardt C (2003) Solvents and solvent effects in organic chemistry 3rd edn. Wiley-VCH, Weinheim
Zurück zum Zitat Reta MR, Anunziata JD, Cattana RI, Silber J (1995) Comparison between solvatochromic and chromatographic studies of anthraquinones in binary aqueous mixtures. J Anal Chim Acta 306:81–89CrossRef Reta MR, Anunziata JD, Cattana RI, Silber J (1995) Comparison between solvatochromic and chromatographic studies of anthraquinones in binary aqueous mixtures. J Anal Chim Acta 306:81–89CrossRef
Zurück zum Zitat Robertson AA (1970) Interactions of liquids with cellulose. Tappi 53:1331–1339 Robertson AA (1970) Interactions of liquids with cellulose. Tappi 53:1331–1339
Zurück zum Zitat Schulte T, Hjerde T, Optun OI, Kleppe PJ, Moe S (2002) Characterization of cellulose by SEC-MALLS. Cellulose 9:149–158CrossRef Schulte T, Hjerde T, Optun OI, Kleppe PJ, Moe S (2002) Characterization of cellulose by SEC-MALLS. Cellulose 9:149–158CrossRef
Zurück zum Zitat Schwager F, Marand E, Davis RM (1996) Determination of self-association equilibrium constants of ethanol by FTIR spectroscopy. J Phys Chem 100:19268–19272CrossRef Schwager F, Marand E, Davis RM (1996) Determination of self-association equilibrium constants of ethanol by FTIR spectroscopy. J Phys Chem 100:19268–19272CrossRef
Zurück zum Zitat Serjeant EP, Dempsey B (1979) Ionization constants of organic acids and aqueous solutions. Pergamon, Oxford Serjeant EP, Dempsey B (1979) Ionization constants of organic acids and aqueous solutions. Pergamon, Oxford
Zurück zum Zitat Sheppard SE, Newsome PT (1933) Heats of wetting of cellulose acetate by aliphatic alcohols and aromatic hydrocarbons. J Phys Chem 37:389-395CrossRef Sheppard SE, Newsome PT (1933) Heats of wetting of cellulose acetate by aliphatic alcohols and aromatic hydrocarbons. J Phys Chem 37:389-395CrossRef
Zurück zum Zitat Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef
Zurück zum Zitat Stone JF, Scallan AM (1986) A structural model for the cell wall of water-swollen wood pulp fiber based on their accessibility to macromolecules. Cell Chem Technol 2:343–358 Stone JF, Scallan AM (1986) A structural model for the cell wall of water-swollen wood pulp fiber based on their accessibility to macromolecules. Cell Chem Technol 2:343–358
Zurück zum Zitat Suzuki K, Kurata S, Ikeda I (1992) Homogeneous acetalization of cellulose in lithium-chloride and dimethylacetamide. Polym Int 29:1–6CrossRef Suzuki K, Kurata S, Ikeda I (1992) Homogeneous acetalization of cellulose in lithium-chloride and dimethylacetamide. Polym Int 29:1–6CrossRef
Zurück zum Zitat Taft RW, Murray JS (1994) Quantitative treatments of solute/solvent interactions. Elsevier, New York Taft RW, Murray JS (1994) Quantitative treatments of solute/solvent interactions. Elsevier, New York
Zurück zum Zitat Thode EF, Guide RG (1959) A thermodynamic interpretation of the swelling of cellulose in organic liquids: the relations among solubility parameter, swelling, and internal surface. Tappi 42:35–39 Thode EF, Guide RG (1959) A thermodynamic interpretation of the swelling of cellulose in organic liquids: the relations among solubility parameter, swelling, and internal surface. Tappi 42:35–39
Zurück zum Zitat Toyoshima I (1993) Cellulosics: chemical, biochemical and material aspects. Ellis Horwood, Chichester Toyoshima I (1993) Cellulosics: chemical, biochemical and material aspects. Ellis Horwood, Chichester
Zurück zum Zitat Vlachou M, Naseef H, Efentakis M, Tarantili PA, Andreopoulos AG (2001) Swelling properties of various polymers used in controlled release systems. J Biomater Appl 15:293–306CrossRef Vlachou M, Naseef H, Efentakis M, Tarantili PA, Andreopoulos AG (2001) Swelling properties of various polymers used in controlled release systems. J Biomater Appl 15:293–306CrossRef
Zurück zum Zitat Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef
Zurück zum Zitat Yachi T, Hayashi J, Shimizu Y (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci Appl Polym Symp 37:325 Yachi T, Hayashi J, Shimizu Y (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci Appl Polym Symp 37:325
Zurück zum Zitat Zeronian SH (1970) Acetylation of cotton treated with sodium hydroxide. J Appl Polym Sci 14:365–372CrossRef Zeronian SH (1970) Acetylation of cotton treated with sodium hydroxide. J Appl Polym Sci 14:365–372CrossRef
Zurück zum Zitat Zeronian SH, Cabradil KE (1972) Action of alkali-metal hydroxides on cotton. J Appl Polym Sci 16:113–128CrossRef Zeronian SH, Cabradil KE (1972) Action of alkali-metal hydroxides on cotton. J Appl Polym Sci 16:113–128CrossRef
Metadaten
Titel
Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter?
verfasst von
Omar A. El Seoud
Ludmila C. Fidale
Naiara Ruiz
Maria Luiza O. D’Almeida
Elisabete Frollini
Publikationsdatum
01.06.2008
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2008
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-007-9189-x

Weitere Artikel der Ausgabe 3/2008

Cellulose 3/2008 Zur Ausgabe