Skip to main content
Erschienen in: Meccanica 15/2017

04.05.2017

CFD investigation on mixing in a rapidly mixed tubular flame burner

verfasst von: Yoldoss Chouari, Wassim Kriaa, Hatem Mhiri, Philippe Bournot

Erschienen in: Meccanica | Ausgabe 15/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational fluid dynamics is used to simulate a mixing process in a rapidly mixed tubular flame burner (RTFB). The effect of several parameters such as the swirl number (S), the velocity ratio (α) and the injector arrangements (N1 and N2) is investigated. The mixing process is identified for a variation of the swirl number (from 0.23 to 5.44) via the Lagrangian discrete phase model. The validation of the numerical results is performed by confronting the predicted particle trajectory, the tangential velocity and the mixing layer thickness results to the experimental data. By means of the validated model, a mathematical correlation between the mixing coefficient and the different geometric parameters characterizing the RTFB is established, enabling the prediction of the mixing time for any RTFB design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Babaei R, Bonakdarpour B, Mozaffari F (2015) Analysis of gas phase characteristics and mixing performance in an activated sludge bioreactor using electrical resistance tomography. Chem Eng J 279:874–884CrossRef Babaei R, Bonakdarpour B, Mozaffari F (2015) Analysis of gas phase characteristics and mixing performance in an activated sludge bioreactor using electrical resistance tomography. Chem Eng J 279:874–884CrossRef
2.
Zurück zum Zitat Delafosse A, Collignon M, Calvo S, Delvigne F, Crine M, Thonart P, Toye D (2014) CFD-based compartment model for description of mixing in bioreactors. Chem Eng Sci 106:76–85CrossRef Delafosse A, Collignon M, Calvo S, Delvigne F, Crine M, Thonart P, Toye D (2014) CFD-based compartment model for description of mixing in bioreactors. Chem Eng Sci 106:76–85CrossRef
3.
Zurück zum Zitat Ouazzane AK, Barigou M (1999) A comparative study of two flow conditioners and their efficacy to reduce asymmetric swirling flow effects on orifice meter performance. Chem Eng Res Des 77:747–753CrossRef Ouazzane AK, Barigou M (1999) A comparative study of two flow conditioners and their efficacy to reduce asymmetric swirling flow effects on orifice meter performance. Chem Eng Res Des 77:747–753CrossRef
4.
Zurück zum Zitat Kim Y, Sartelet K, Raut J, Chazette P (2015) Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris. Atmos Environ 107:289–306ADSCrossRef Kim Y, Sartelet K, Raut J, Chazette P (2015) Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris. Atmos Environ 107:289–306ADSCrossRef
5.
Zurück zum Zitat Tatsumi K, Tanaka M, Woodfield PL, Nakabe K (2010) Swirl and buoyancy effects on mixing performance of baffle-plate-type miniature confined multijet. Int J Heat Fluid Flow 31:45–56CrossRef Tatsumi K, Tanaka M, Woodfield PL, Nakabe K (2010) Swirl and buoyancy effects on mixing performance of baffle-plate-type miniature confined multijet. Int J Heat Fluid Flow 31:45–56CrossRef
6.
Zurück zum Zitat Yang Y, Kaer SK (2012) Large-eddy simulations of the non-reactive flow in the Sydney swirl burner. Int J Heat Fluid Flow 36:47–57CrossRef Yang Y, Kaer SK (2012) Large-eddy simulations of the non-reactive flow in the Sydney swirl burner. Int J Heat Fluid Flow 36:47–57CrossRef
7.
Zurück zum Zitat Khaldi N, Chouari Y, Mhiri H, Bournot P (2016) CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized–coal furnace. Heat Mass Transf 52:1881–1890ADSCrossRef Khaldi N, Chouari Y, Mhiri H, Bournot P (2016) CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized–coal furnace. Heat Mass Transf 52:1881–1890ADSCrossRef
8.
Zurück zum Zitat Syred N, Beér JM (1974) Combustion in swirling flows: a review. Combust Flame 23:143–201CrossRef Syred N, Beér JM (1974) Combustion in swirling flows: a review. Combust Flame 23:143–201CrossRef
9.
Zurück zum Zitat Ishizuka S (1989) An experimental study on extinction and stability of tubular flames. Combust Flame 75:367–379CrossRef Ishizuka S (1989) An experimental study on extinction and stability of tubular flames. Combust Flame 75:367–379CrossRef
10.
Zurück zum Zitat Shimokuri D, Ishizuka S (2005) Flame stabilization with a tubular flame. Proc Combust Inst 30:399–406CrossRef Shimokuri D, Ishizuka S (2005) Flame stabilization with a tubular flame. Proc Combust Inst 30:399–406CrossRef
11.
Zurück zum Zitat Ishizuka S, Motodamari T, Shimokuri D (2007) Rapidly mixed combustion in a tubular flame burner. Proc Combust Inst 31:1085–1092CrossRef Ishizuka S, Motodamari T, Shimokuri D (2007) Rapidly mixed combustion in a tubular flame burner. Proc Combust Inst 31:1085–1092CrossRef
12.
Zurück zum Zitat Shi B, Shimokuri D, Ishizuka S (2013) Methane/oxygen combustion in a rapidly mixed type tubular flame burner. Proc Combust Inst 34:3369–3377CrossRef Shi B, Shimokuri D, Ishizuka S (2013) Methane/oxygen combustion in a rapidly mixed type tubular flame burner. Proc Combust Inst 34:3369–3377CrossRef
13.
Zurück zum Zitat Shi B, Shimokuri D, Ishizuka S (2014) Reexamination on methane/oxygen combustion in a rapidly mixed type tubular flame burner. Combust Flame 161:1310–1325CrossRef Shi B, Shimokuri D, Ishizuka S (2014) Reexamination on methane/oxygen combustion in a rapidly mixed type tubular flame burner. Combust Flame 161:1310–1325CrossRef
14.
Zurück zum Zitat Shi B, Hu J, Peng H, Ishizuka S (2014) Flow visualization and mixing in a rapidly mixed type tubular flame burner. Exp Thermal Fluid Sci 54:1–11CrossRef Shi B, Hu J, Peng H, Ishizuka S (2014) Flow visualization and mixing in a rapidly mixed type tubular flame burner. Exp Thermal Fluid Sci 54:1–11CrossRef
15.
Zurück zum Zitat Shi B, Hu J, Ishizuka S (2015) Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combust Flame 162:420–430CrossRef Shi B, Hu J, Ishizuka S (2015) Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combust Flame 162:420–430CrossRef
16.
Zurück zum Zitat Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New York, p 40MATH Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New York, p 40MATH
17.
Zurück zum Zitat Chang F, Dhir VK (1994) Turbulent flow field in tangentially injected swirl flows in tubes. Int J Heat Fluid Flow 15:346–356CrossRef Chang F, Dhir VK (1994) Turbulent flow field in tangentially injected swirl flows in tubes. Int J Heat Fluid Flow 15:346–356CrossRef
18.
Zurück zum Zitat Chanaud RC (1963) Experiment concerning the vortex whistle. J Acoust Soc Am 35:953–1003ADSCrossRef Chanaud RC (1963) Experiment concerning the vortex whistle. J Acoust Soc Am 35:953–1003ADSCrossRef
19.
Zurück zum Zitat Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27:431–481CrossRef Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27:431–481CrossRef
20.
Zurück zum Zitat Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329CrossRef Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329CrossRef
21.
Zurück zum Zitat Stock DE (1996) Particle dispersion in flowing gases, Freeman Scholar Lecture. J Fluids Eng 118:4–17CrossRef Stock DE (1996) Particle dispersion in flowing gases, Freeman Scholar Lecture. J Fluids Eng 118:4–17CrossRef
22.
Zurück zum Zitat Chen X, Zhong W, Sun B, Jin B, Zhou X (2012) Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on the CFD DPM approach. Powder Technol 217:252–260CrossRef Chen X, Zhong W, Sun B, Jin B, Zhou X (2012) Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on the CFD DPM approach. Powder Technol 217:252–260CrossRef
23.
Zurück zum Zitat Sun W, Zhong W, Yong Zhang S (2015) LES-DPM simulation of turbulent gas-particle flow on opposed round jets. Powder Technol 270:302–311CrossRef Sun W, Zhong W, Yong Zhang S (2015) LES-DPM simulation of turbulent gas-particle flow on opposed round jets. Powder Technol 270:302–311CrossRef
24.
Zurück zum Zitat FLUENT 13.0 (2015) User’s Guide. Fluent Inc, Lebanon, NH FLUENT 13.0 (2015) User’s Guide. Fluent Inc, Lebanon, NH
25.
Zurück zum Zitat Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208ADSCrossRefMATH Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208ADSCrossRefMATH
26.
Zurück zum Zitat Kitoh O (1991) Experimental study of turbulent swirling flow in a straight pipe. J Fluid Mech 225:445–479ADSCrossRef Kitoh O (1991) Experimental study of turbulent swirling flow in a straight pipe. J Fluid Mech 225:445–479ADSCrossRef
27.
Zurück zum Zitat Hreiz R, Gentric C, Midoux N (2011) Numerical investigation of swirling flow in cylindrical cyclones. Chem Eng Res Des 89:2521–2539CrossRef Hreiz R, Gentric C, Midoux N (2011) Numerical investigation of swirling flow in cylindrical cyclones. Chem Eng Res Des 89:2521–2539CrossRef
28.
Zurück zum Zitat Mantilla I (1998) Bubble trajectory analysis in gas–liquid cylindrical cyclone separators. Master’s thesis, The University of Tulsa Mantilla I (1998) Bubble trajectory analysis in gas–liquid cylindrical cyclone separators. Master’s thesis, The University of Tulsa
Metadaten
Titel
CFD investigation on mixing in a rapidly mixed tubular flame burner
verfasst von
Yoldoss Chouari
Wassim Kriaa
Hatem Mhiri
Philippe Bournot
Publikationsdatum
04.05.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 15/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0675-4

Weitere Artikel der Ausgabe 15/2017

Meccanica 15/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.