Skip to main content

2020 | OriginalPaper | Buchkapitel

CFD Modeling of Data Centers

verfasst von : Kailash Karki, Suhas Patankar, Amir Radmehr

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the prediction of airflow and temperature distributions in data centers with the goal of achieving proper cooling of the computer equipment. The focus is on raised-floor data centers, but the material is equally applicable to other designs. First, the concept of a raised-floor data center is introduced and the cooling challenge is described. In this arrangement, cooling air is supplied through perforated tiles. The flow rates of the cooling air must meet the cooling requirements of the computer racks placed next to the tiles. These airflow rates are governed primarily by the pressure distribution under the raised floor. Thus, the key to modifying the flow rates is to influence the flow field in the under-floor plenum. Computational Fluid Dynamics (CFD) studies are presented to provide insight into various factors affecting the airflow distribution and the corresponding cooling and to explore various methods for controlling the airflow distribution. Then attention is turned to the above-floor space, where the focus is on preventing the hot air from entering the inlets of computer servers. Different strategies for achieving this prevention are considered. CFD modeling is ideal for understanding the behavior of these strategies and for determining their effectiveness. Some recent studies in these areas are summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASHRAE (2008). Thermal guidelines for data processing environments, ASHRAE, Atlanta. ASHRAE (2008). Thermal guidelines for data processing environments, ASHRAE, Atlanta.
2.
Zurück zum Zitat Patankar, S. V. (2010). Airflow and cooling in a data center. Journal of Heat Transfer, 132, 073001-1–073001-17.CrossRef Patankar, S. V. (2010). Airflow and cooling in a data center. Journal of Heat Transfer, 132, 073001-1–073001-17.CrossRef
3.
Zurück zum Zitat Joshi, Y. & Kumar, P. (2012). Energy efficient thermal management of data centers, Springer. Joshi, Y. & Kumar, P. (2012). Energy efficient thermal management of data centers, Springer.
4.
Zurück zum Zitat Alkharabsheh, S., Fernandes, J., Gebrehiwot, B., Agonafer, D., Ghose, K., Ortega, A., et al. (2015). A brief overview of recent developments in thermal management of data centers. ASME Journal of Electronic Packaging, 137, 040801-1–040801-19. Alkharabsheh, S., Fernandes, J., Gebrehiwot, B., Agonafer, D., Ghose, K., Ortega, A., et al. (2015). A brief overview of recent developments in thermal management of data centers. ASME Journal of Electronic Packaging, 137, 040801-1–040801-19.
5.
Zurück zum Zitat Kang, S., Schmidt, R. R., Kelkar, K. M., Radmehr, A., & Patankar, S. V. (2001). A methodology for the design of perforated tiles in raised floor data centers using computational flow analysis. IEEE Transactions on Components and Packaging Technologies, 24, 177–183.CrossRef Kang, S., Schmidt, R. R., Kelkar, K. M., Radmehr, A., & Patankar, S. V. (2001). A methodology for the design of perforated tiles in raised floor data centers using computational flow analysis. IEEE Transactions on Components and Packaging Technologies, 24, 177–183.CrossRef
6.
Zurück zum Zitat Schmidt, R. R., Karki, K. C., Kelkar, K. M., Radmehr, A., & Patankar, S. V. (2001). Measurements and predictions of the flow distribution through perforated tiles in raised-floor data centers. In Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Paper No. IPACK2001-15728. Schmidt, R. R., Karki, K. C., Kelkar, K. M., Radmehr, A., & Patankar, S. V. (2001). Measurements and predictions of the flow distribution through perforated tiles in raised-floor data centers. In Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Paper No. IPACK2001-15728.
7.
Zurück zum Zitat Karki, K. C., Radmehr, A., & Patankar, S. V. (2003). Use of computational fluid dynamics for calculating flow rates through perforated tiles in raised-floor data centers. International Journal of Heating, Ventilation, Air-Conditioning, and Refrigeration Research, 9, 153–166. Karki, K. C., Radmehr, A., & Patankar, S. V. (2003). Use of computational fluid dynamics for calculating flow rates through perforated tiles in raised-floor data centers. International Journal of Heating, Ventilation, Air-Conditioning, and Refrigeration Research, 9, 153–166.
8.
Zurück zum Zitat Patankar, S. V., & Karki, K. C. (2004). Distribution of cooling airflow in a raised-floor data center. ASHRAE Transactions, 110, 629–635. Patankar, S. V., & Karki, K. C. (2004). Distribution of cooling airflow in a raised-floor data center. ASHRAE Transactions, 110, 629–635.
9.
Zurück zum Zitat Karki, K. C., Patankar, S. V., & Radmehr, A. (2003). Techniques for controlling airflow distribution in raised-floor data centers. Paper No. IPACK 2003-35282, Proceedings of IPACK’2003, The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition. Karki, K. C., Patankar, S. V., & Radmehr, A. (2003). Techniques for controlling airflow distribution in raised-floor data centers. Paper No. IPACK 2003-35282, Proceedings of IPACK’2003, The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition.
10.
Zurück zum Zitat Van Gilder, J., & Schmidt, R. R. (2005). Airflow uniformity through perforated tiles in a raised-floor data center, IPACK2005–73375. ASME InterPack’05. Van Gilder, J., & Schmidt, R. R. (2005). Airflow uniformity through perforated tiles in a raised-floor data center, IPACK2005–73375. ASME InterPack’05.
11.
Zurück zum Zitat Bhopte, S., Sammakia, B., Iyengar, M., & Schmidt, R. (2011). Numerical and experimental study of the effect of underfloor blockages on data center performance. Journal of Electronic Packaging, 133, 011007–1–011007-7.CrossRef Bhopte, S., Sammakia, B., Iyengar, M., & Schmidt, R. (2011). Numerical and experimental study of the effect of underfloor blockages on data center performance. Journal of Electronic Packaging, 133, 011007–1–011007-7.CrossRef
12.
Zurück zum Zitat Abdelmaksoud, W. A., Khalifa, H. E., Dang, T. Q., Elhadidi, B., Schmidt, R. R., & Iyengar, M. (2010). Experimental and computational study of perforated floor tile in data centers. In Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Abdelmaksoud, W. A., Khalifa, H. E., Dang, T. Q., Elhadidi, B., Schmidt, R. R., & Iyengar, M. (2010). Experimental and computational study of perforated floor tile in data centers. In Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).
13.
Zurück zum Zitat Arghode, V. K., Kumar, P., Joshi, Y., Weiss, T., & Meyer, G. (2013). Rack level modeling of air flow through perforated tile in a data center. ASME Journal of Electronic Packaging, 135, 030901-1–030902-7.CrossRef Arghode, V. K., Kumar, P., Joshi, Y., Weiss, T., & Meyer, G. (2013). Rack level modeling of air flow through perforated tile in a data center. ASME Journal of Electronic Packaging, 135, 030901-1–030902-7.CrossRef
14.
Zurück zum Zitat Arghode, V. K., & Joshi, Y. (2016). Modified body force model for air flow through perforated floor tiles in data centers. ASME Journal of Electronic Packaging, 138, 031002-1–031002-11.CrossRef Arghode, V. K., & Joshi, Y. (2016). Modified body force model for air flow through perforated floor tiles in data centers. ASME Journal of Electronic Packaging, 138, 031002-1–031002-11.CrossRef
15.
Zurück zum Zitat Samadiani, E., Rambo, J., & Joshi, Y. (2010). Numerical modeling of perforated tile flow distribution in raised-floor data center. ASME Journal of Electronic Packaging, 132, 021002-1–021002-8. Samadiani, E., Rambo, J., & Joshi, Y. (2010). Numerical modeling of perforated tile flow distribution in raised-floor data center. ASME Journal of Electronic Packaging, 132, 021002-1–021002-8.
16.
Zurück zum Zitat Alkharabsheh, A., Sammakia, B., Shrivastava, S., & Schmidt, R. (2013). Utilizing practical fan curves in CFD modeling of a data center. In 29th IEEE Semi-Therm Symposium. Alkharabsheh, A., Sammakia, B., Shrivastava, S., & Schmidt, R. (2013). Utilizing practical fan curves in CFD modeling of a data center. In 29th IEEE Semi-Therm Symposium.
17.
Zurück zum Zitat Alkharabsheh, A., Sammakia, B., & Shrivastava, S. (2015). Experimentally validated computational fluid dynamics model for a data center with cold aisle containment. ASME Journal of Electronic Packaging, 137, 021010-1–021010-9. Alkharabsheh, A., Sammakia, B., & Shrivastava, S. (2015). Experimentally validated computational fluid dynamics model for a data center with cold aisle containment. ASME Journal of Electronic Packaging, 137, 021010-1–021010-9.
18.
Zurück zum Zitat Radmehr, A., Schmidt, R. R, Karki, K. C. & Patankar, S. V. (2005). Distributed leakage flow in raised-floor data centers. IPACK2005–73273, ASME InterPack’05. Radmehr, A., Schmidt, R. R, Karki, K. C. & Patankar, S. V. (2005). Distributed leakage flow in raised-floor data centers. IPACK2005–73273, ASME InterPack’05.
19.
Zurück zum Zitat Karki, K. C., Radmehr, A., & Patankar, S. V. (2007). Prediction of distributed air leakage in raised-floor data centers. ASHRAE Transactions, 113, 219–226. Karki, K. C., Radmehr, A., & Patankar, S. V. (2007). Prediction of distributed air leakage in raised-floor data centers. ASHRAE Transactions, 113, 219–226.
20.
Zurück zum Zitat Schmidt, R. R. (2001). Effect of data center characteristics on data processing equipment inlet temperatures. Paper No. IPACK2001–15870, Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition. Schmidt, R. R. (2001). Effect of data center characteristics on data processing equipment inlet temperatures. Paper No. IPACK2001–15870, Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition.
21.
Zurück zum Zitat Schmidt, R. R. & Cruz, E. (2002). Raised floor computer data center: effect on rack inlet temperatures of chilled air exiting both the hot and cold aisles. In IEEE 2002 Inter Society Conference on Thermal Phenomena (pp. 580–594). Schmidt, R. R. & Cruz, E. (2002). Raised floor computer data center: effect on rack inlet temperatures of chilled air exiting both the hot and cold aisles. In IEEE 2002 Inter Society Conference on Thermal Phenomena (pp. 580–594).
22.
Zurück zum Zitat Schmidt, R. R., & Cruz, E. (2004). Cluster of high-powered racks within a raised-floor computer data center: Effect of perforated tile flow distribution on rack inlet temperatures. ASME Journal of Electronic Packaging, 126, 510–518.CrossRef Schmidt, R. R., & Cruz, E. (2004). Cluster of high-powered racks within a raised-floor computer data center: Effect of perforated tile flow distribution on rack inlet temperatures. ASME Journal of Electronic Packaging, 126, 510–518.CrossRef
23.
Zurück zum Zitat Schmidt, R., & Cruz, E. (2002). Raised floor data center: Effect on rack inlet temperatures when high powered racks are situated amongst lowered powered racks. ASME Paper No. IMECE2002-39652. Schmidt, R., & Cruz, E. (2002). Raised floor data center: Effect on rack inlet temperatures when high powered racks are situated amongst lowered powered racks. ASME Paper No. IMECE2002-39652.
24.
Zurück zum Zitat Schmidt, R., & Cruz, E. (2003). Raised floor data center: Effect on rack inlet temperatures when rack flow rates are reduced. Paper No. IPACK2003-35241. Schmidt, R., & Cruz, E. (2003). Raised floor data center: Effect on rack inlet temperatures when rack flow rates are reduced. Paper No. IPACK2003-35241.
25.
Zurück zum Zitat Guggari, S., Agonafer, D., Belady, C., & Stahl, L. (2003). A hybrid methodology for the optimization of data center room layout. Paper No. IPACK2003-35273, Proceedings of IPACK’03, The Pacific Rim/ASME International Electronics Packaging technical Conference and Exhibition. Guggari, S., Agonafer, D., Belady, C., & Stahl, L. (2003). A hybrid methodology for the optimization of data center room layout. Paper No. IPACK2003-35273, Proceedings of IPACK’03, The Pacific Rim/ASME International Electronics Packaging technical Conference and Exhibition.
26.
Zurück zum Zitat Bhopte, S., Aganofer, D., Schmidt, R., & Sammakia, B. (2006). Optimization of data center room layout to minimize rack inlet temperatures. ASME Journal of Electronic Packaging, 128, 380–387.CrossRef Bhopte, S., Aganofer, D., Schmidt, R., & Sammakia, B. (2006). Optimization of data center room layout to minimize rack inlet temperatures. ASME Journal of Electronic Packaging, 128, 380–387.CrossRef
27.
Zurück zum Zitat Radmehr, A., Karki K. C., & Patankar, S. V. (2007). Analysis of airflow distribution across a front-to-rear server rack. Paper No. InterPack2007-33574, Proceedings of IPACK2007. Radmehr, A., Karki K. C., & Patankar, S. V. (2007). Analysis of airflow distribution across a front-to-rear server rack. Paper No. InterPack2007-33574, Proceedings of IPACK2007.
28.
Zurück zum Zitat Patel, C.D., Bash, C. E., Belady, C., Stahl, L., & Sullivan, D. (2001). Computational fluid dynamics modeling of high compute density data centers to assure system air inlet specifications. Paper No. IPACK2001-15622, Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition. Patel, C.D., Bash, C. E., Belady, C., Stahl, L., & Sullivan, D. (2001). Computational fluid dynamics modeling of high compute density data centers to assure system air inlet specifications. Paper No. IPACK2001-15622, Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition.
29.
Zurück zum Zitat Patel, C. D., Sharma, R., Bash, C. E. & Beitelmal, A. (2002). Thermal considerations in cooling large scale high compute data centers. In ITHERM 2002, The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Patel, C. D., Sharma, R., Bash, C. E. & Beitelmal, A. (2002). Thermal considerations in cooling large scale high compute data centers. In ITHERM 2002, The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.
30.
Zurück zum Zitat Sorell, V., Escalante, S., & Yang, J. (2005). Comparison of overhead and underfloor air delivery systems in a data center environment using CFD modeling. ASHRAE Transaction, 111, 756–764. Sorell, V., Escalante, S., & Yang, J. (2005). Comparison of overhead and underfloor air delivery systems in a data center environment using CFD modeling. ASHRAE Transaction, 111, 756–764.
31.
Zurück zum Zitat Shrivastava, S., Sammakia, B., Schmidt R., & Iyengar, M. (2005). Comparative analysis of different data center airflow management configurations. Paper No. IPACK2005-73234. Shrivastava, S., Sammakia, B., Schmidt R., & Iyengar, M. (2005). Comparative analysis of different data center airflow management configurations. Paper No. IPACK2005-73234.
32.
Zurück zum Zitat Sullivan, R. F. (2002). Alternating cold and hot aisles provides more reliable cooling for server farms, a White Paper from the Uptime Institute, Inc., Santa Fe, NM, USA. Sullivan, R. F. (2002). Alternating cold and hot aisles provides more reliable cooling for server farms, a White Paper from the Uptime Institute, Inc., Santa Fe, NM, USA.
33.
Zurück zum Zitat Idelchik, I. E. (1994). Handbook of hydraulic resistance. Florida: CRC Press. Idelchik, I. E. (1994). Handbook of hydraulic resistance. Florida: CRC Press.
34.
Zurück zum Zitat Tate Access Floors Inc. (2008). PERF1250 Air Flow Panel-24. Tate Access Floors Inc. (2008). PERF1250 Air Flow Panel-24.
35.
Zurück zum Zitat Innovative Research, Inc. (2004). Effect of backpressure on the flow rate delivered by a CRAC unit, Technical Note. Innovative Research, Inc. (2004). Effect of backpressure on the flow rate delivered by a CRAC unit, Technical Note.
36.
Zurück zum Zitat Tatchell-Evans, M., Kapur, N., Summers, J., Thompson, H., & Oldham, D. (2017). An experimental and theoretical investigation of the extent of bypass air within data centers employing aisle containment, and its impact on power consumption. Applied Energy, 186, 457–469.CrossRef Tatchell-Evans, M., Kapur, N., Summers, J., Thompson, H., & Oldham, D. (2017). An experimental and theoretical investigation of the extent of bypass air within data centers employing aisle containment, and its impact on power consumption. Applied Energy, 186, 457–469.CrossRef
37.
Zurück zum Zitat Erden, H. S., Khalifa, H. E., & Schmidt, R. R. (2014). A hybrid lumped capacitance-CFD model for the simulation of data center transients. HVAC&R Research, 20, 688–702.CrossRef Erden, H. S., Khalifa, H. E., & Schmidt, R. R. (2014). A hybrid lumped capacitance-CFD model for the simulation of data center transients. HVAC&R Research, 20, 688–702.CrossRef
38.
Zurück zum Zitat Alkharabsheh, S., Sammakia, B., Shrivastava, S., & Schmidt, R. (2014). Dynamic models for server rack and CRAH in a room level CFD model of a data center. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM) (pp. 1338–1345). Alkharabsheh, S., Sammakia, B., Shrivastava, S., & Schmidt, R. (2014). Dynamic models for server rack and CRAH in a room level CFD model of a data center. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM) (pp. 1338–1345).
39.
Zurück zum Zitat Patel, C. D., Bash, C. E., Belady, C., Stahl, L., & Sullivan, D. (2001). Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications. In Pacific Rim Technical Conference and Exposition of Packaging and Integration of Photonic Systems, Paper No. IPACK2001-15622. Patel, C. D., Bash, C. E., Belady, C., Stahl, L., & Sullivan, D. (2001). Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications. In Pacific Rim Technical Conference and Exposition of Packaging and Integration of Photonic Systems, Paper No. IPACK2001-15622.
40.
Zurück zum Zitat Shrivastava, S. K., Iyengar, M., Sammakia, B. G., Schmidt, R., & vanGilder, J. W. (2006). Experimental-numerical comparison for a high-density data center: hot spot fluxes in excess of 500 W/ft2. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 402–411). Shrivastava, S. K., Iyengar, M., Sammakia, B. G., Schmidt, R., & vanGilder, J. W. (2006). Experimental-numerical comparison for a high-density data center: hot spot fluxes in excess of 500 W/ft2. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 402–411).
41.
Zurück zum Zitat Tan, S. P., Toh, K. C., & Wong, Y. W. (2007). Server-rack air flow and heat transfer interactions in a data center. Paper No. IPACK2007-33672. Tan, S. P., Toh, K. C., & Wong, Y. W. (2007). Server-rack air flow and heat transfer interactions in a data center. Paper No. IPACK2007-33672.
42.
Zurück zum Zitat Bash, C. E., Patel, C. D. & Sharma, R. K. (2006). Dynamic thermal management of air cooled data centers. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 445–452). Bash, C. E., Patel, C. D. & Sharma, R. K. (2006). Dynamic thermal management of air cooled data centers. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 445–452).
43.
Zurück zum Zitat Almoli, A. (2013). Air flow management inside data centres, Ph.D. Thesis, University of Leeds. Almoli, A. (2013). Air flow management inside data centres, Ph.D. Thesis, University of Leeds.
44.
Zurück zum Zitat Zhang, X., VanGilder, J. W., Iyengar, M., & Schmidt, R. R. (2008). Effect of rack modeling detail on the numerical results of a data center test cell. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 1183–1190). Zhang, X., VanGilder, J. W., Iyengar, M., & Schmidt, R. R. (2008). Effect of rack modeling detail on the numerical results of a data center test cell. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 1183–1190).
45.
Zurück zum Zitat Zhai, J. Z., Hermansen, K. A., & Al-Saadi, S. (2012). The development of simplified rack boundary conditions for numerical data center models. ASHRAE Transactions, 118, 436–449. Zhai, J. Z., Hermansen, K. A., & Al-Saadi, S. (2012). The development of simplified rack boundary conditions for numerical data center models. ASHRAE Transactions, 118, 436–449.
46.
Zurück zum Zitat Coxe, K. C. (2009). Rack infrastructure effects on the thermal performance of a server, Dell White Paper. Coxe, K. C. (2009). Rack infrastructure effects on the thermal performance of a server, Dell White Paper.
47.
Zurück zum Zitat North, T. (2011). Understanding how cabinet door perforation impacts airflow. BICSI News Magazine, September/October 2011 (pp. 36–42). North, T. (2011). Understanding how cabinet door perforation impacts airflow. BICSI News Magazine, September/October 2011 (pp. 36–42).
48.
Zurück zum Zitat Rubenstein, B. (2008). Cable management arm airflow impedance study. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 577–582). Rubenstein, B. (2008). Cable management arm airflow impedance study. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 577–582).
49.
Zurück zum Zitat Kennedy, D. (2012). Ramifications of server airflow leakage in data centers with aisle containment. White Paper, Tate Access Floors, Inc. Kennedy, D. (2012). Ramifications of server airflow leakage in data centers with aisle containment. White Paper, Tate Access Floors, Inc.
50.
Zurück zum Zitat Bajura, R. A., & Jones, E. H. (1976). Flow distribution in manifolds. Transactions on ASME Journal of Fluids Engineering, 98, 654–666.CrossRef Bajura, R. A., & Jones, E. H. (1976). Flow distribution in manifolds. Transactions on ASME Journal of Fluids Engineering, 98, 654–666.CrossRef
51.
Zurück zum Zitat Majumdar, A. K. (1980). Mathematical modelling of flows in dividing and combining flow manifolds. Applied Mathematical Modelling, 4, 424–432.CrossRef Majumdar, A. K. (1980). Mathematical modelling of flows in dividing and combining flow manifolds. Applied Mathematical Modelling, 4, 424–432.CrossRef
52.
Zurück zum Zitat Radmehr, A., Fitzpatrick, J., & Karki, K. (2018). Optimizing cooling performance of a data center using CFD simulations and measurements. ASHRAE Journal, 60, 22–30. Radmehr, A., Fitzpatrick, J., & Karki, K. (2018). Optimizing cooling performance of a data center using CFD simulations and measurements. ASHRAE Journal, 60, 22–30.
53.
Zurück zum Zitat Radmehr, A., Noll, B., Fitzpatrick, J., & Karki, K. (2013). CFD modeling of an existing raised-floor data center. In 29th IEEE Semi-Term Symposium. Radmehr, A., Noll, B., Fitzpatrick, J., & Karki, K. (2013). CFD modeling of an existing raised-floor data center. In 29th IEEE Semi-Term Symposium.
54.
Zurück zum Zitat Athavale, J., Joshi, Y., & Yoda, M. (2018). Experimentally validated computational fluid dynamics model for data center with active tiles. ASME Journal of Electronic Packaging, 140, 010902–1–010902-10.CrossRef Athavale, J., Joshi, Y., & Yoda, M. (2018). Experimentally validated computational fluid dynamics model for data center with active tiles. ASME Journal of Electronic Packaging, 140, 010902–1–010902-10.CrossRef
55.
Zurück zum Zitat Patankar, S., Karki, K., & Radmehr, R. (2012). Cold-aisle and hot-aisle containment, 7 × 24 Magazine. Fall, 52–58 Patankar, S., Karki, K., & Radmehr, R. (2012). Cold-aisle and hot-aisle containment, 7 × 24 Magazine. Fall, 52–58
56.
Zurück zum Zitat Niemann, J., Brown, K., & Avelar, V. Hot-Aisle vs. Cold-Aisle Containment for Data Centers, White Paper 135, APC by Schneider Electric Niemann, J., Brown, K., & Avelar, V. Hot-Aisle vs. Cold-Aisle Containment for Data Centers, White Paper 135, APC by Schneider Electric
57.
Zurück zum Zitat Arghode, V., Sundaralingam, V., Joshi, Y., & Phelps, W. (2013). Thermal characteristics of open and contained data center cold aisle. ASME Journal of Heat Transfer, 135, 061901–1–061901-11.CrossRef Arghode, V., Sundaralingam, V., Joshi, Y., & Phelps, W. (2013). Thermal characteristics of open and contained data center cold aisle. ASME Journal of Heat Transfer, 135, 061901–1–061901-11.CrossRef
58.
Zurück zum Zitat Arghode, V., & Joshi, Y. (2014). Room level modeling of air flow in a contained data center aisle. ASME Journal of Electronic Packaging, 36, 011011–1–011011-10. Arghode, V., & Joshi, Y. (2014). Room level modeling of air flow in a contained data center aisle. ASME Journal of Electronic Packaging, 36, 011011–1–011011-10.
59.
Zurück zum Zitat Schmidt, R., Iyengar, M., & Caricari, J. (2010). Data center housing high performance supercomputer cluster: above floor thermal measurements compared to CFD analysis. ASME Journal of Electronic Packaging, 132, 021009–1–021009-8.CrossRef Schmidt, R., Iyengar, M., & Caricari, J. (2010). Data center housing high performance supercomputer cluster: above floor thermal measurements compared to CFD analysis. ASME Journal of Electronic Packaging, 132, 021009–1–021009-8.CrossRef
60.
Zurück zum Zitat Beitelmal, A., & Bash, C. D. (2004). Thermo-fluids provisioning of a high performance high density data center. Technical Report No. HPL-2004-146. Hewlett Packard Laboratories, Palo Alto, CA. Beitelmal, A., & Bash, C. D. (2004). Thermo-fluids provisioning of a high performance high density data center. Technical Report No. HPL-2004-146. Hewlett Packard Laboratories, Palo Alto, CA.
61.
Zurück zum Zitat Gondapalli, S., Ibrahim, M., Bhopte S., Sammakia, B., Murray, B., & Ghose, K. (2010). Numerical modeling of data centers with transient boundary conditions. In 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 262–268). Gondapalli, S., Ibrahim, M., Bhopte S., Sammakia, B., Murray, B., & Ghose, K. (2010). Numerical modeling of data centers with transient boundary conditions. In 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 262–268).
62.
Zurück zum Zitat Ibrahim, M., Gondapalli, S., Bhopte S., Sammakia, B., Murray, B., & Ghose, K. (2010). Numerical modeling approach to dynamic data center cooling. In 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1262–1268). Ibrahim, M., Gondapalli, S., Bhopte S., Sammakia, B., Murray, B., & Ghose, K. (2010). Numerical modeling approach to dynamic data center cooling. In 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1262–1268).
63.
Zurück zum Zitat Erden, H. S., Khalifa, H. E., & Schmidt, R. R. (2014). Determination of the lumped-capacitance parameters of air-cooled servers through air temperature measurements. ASME Journal of Electronic Packaging, 136, 031005–1–031005-9. Erden, H. S., Khalifa, H. E., & Schmidt, R. R. (2014). Determination of the lumped-capacitance parameters of air-cooled servers through air temperature measurements. ASME Journal of Electronic Packaging, 136, 031005–1–031005-9.
64.
Zurück zum Zitat VanGilder, J, Pardey, Z., Healey, C., & Zhang, X. (2013). A compact server model for transient data center simulations. ASHRAE Transactions, Paper No. DE-13-032. VanGilder, J, Pardey, Z., Healey, C., & Zhang, X. (2013). A compact server model for transient data center simulations. ASHRAE Transactions, Paper No. DE-13-032.
65.
Zurück zum Zitat VanGilder, J. W., Healey, C. M., Condor, M., Tian, W., & Menusier, Q. (2017). A compact cooling-system model for transient data center simulations. In 17th IEEE ITHERM Conference. VanGilder, J. W., Healey, C. M., Condor, M., Tian, W., & Menusier, Q. (2017). A compact cooling-system model for transient data center simulations. In 17th IEEE ITHERM Conference.
Metadaten
Titel
CFD Modeling of Data Centers
verfasst von
Kailash Karki
Suhas Patankar
Amir Radmehr
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_18

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.