Skip to main content

2024 | OriginalPaper | Buchkapitel

Challenges in Developing Great Quasi-Monte Carlo Software

verfasst von : Sou-Cheng T. Choi, Yuhan Ding, Fred J. Hickernell, Jagadeeswaran Rathinavel, Aleksei G. Sorokin

Erschienen in: Monte Carlo and Quasi-Monte Carlo Methods

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quasi-Monte Carlo (QMC) methods have developed over several decades. With the explosion in computational science, there is a need for great software that implements QMC algorithms. We summarize the QMC software that has been developed to date, propose some criteria for developing great QMC software, and suggest some steps toward achieving great software. We illustrate these criteria and steps with the Quasi-Monte Carlo Python library (QMCPy), an open-source community software framework, extensible by design with common programming interfaces to an increasing number of existing or emerging QMC libraries developed by the greater community of QMC researchers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Seidl, D.T., Stephens, J.A., Swiler, L.P., Tran, A., Winokur, J.G.: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.16 User’s Manual. Sandia National Laboratories (2022) Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Seidl, D.T., Stephens, J.A., Swiler, L.P., Tran, A., Winokur, J.G.: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.16 User’s Manual. Sandia National Laboratories (2022)
3.
Zurück zum Zitat Bernholdt, D.E., Cary, J., Heroux, M., McInnes, L.C.: The science of scientific-software development and use (2022) Bernholdt, D.E., Cary, J., Heroux, M., McInnes, L.C.: The science of scientific-software development and use (2022)
4.
Zurück zum Zitat Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14, 88–100 (1988)CrossRef Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14, 88–100 (1988)CrossRef
5.
Zurück zum Zitat Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992)CrossRef Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992)CrossRef
8.
Zurück zum Zitat Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: A. Keller (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 23–50. Springer, Cham (2022). https://arxiv.org/abs/2102.07833 Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: A. Keller (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 23–50. Springer, Cham (2022). https://​arxiv.​org/​abs/​2102.​07833
13.
Zurück zum Zitat Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin (2002)CrossRef Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin (2002)CrossRef
14.
Zurück zum Zitat Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Texts in Statistical Science. Chapman & Hall (2013) Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Texts in Statistical Science. Chapman & Hall (2013)
15.
Zurück zum Zitat Glasserman, P.: Monte Carlo Methods in Financial Engineering, Applications of Mathematics, vol. 53. Springer, New York (2004) Glasserman, P.: Monte Carlo Methods in Financial Engineering, Applications of Mathematics, vol. 53. Springer, New York (2004)
17.
Zurück zum Zitat Hickernell, F.J., Choi, S.C.T., Jiang, L., Jiménez Rugama, Ll.A.: Monte Carlo simulation, automatic stopping criteria for. In: Davidian, M., Everitt, B., Kenett, R.S., Molenberghs, G., Piegorsch, W., Ruggeri, F. (eds.) Wiley StatsRef-Statistics Reference Online. John Wiley & Sons Ltd. (2018). https://doi.org/10.1002/9781118445112.stat08035 Hickernell, F.J., Choi, S.C.T., Jiang, L., Jiménez Rugama, Ll.A.: Monte Carlo simulation, automatic stopping criteria for. In: Davidian, M., Everitt, B., Kenett, R.S., Molenberghs, G., Piegorsch, W., Ruggeri, F. (eds.) Wiley StatsRef-Statistics Reference Online. John Wiley & Sons Ltd. (2018). https://​doi.​org/​10.​1002/​9781118445112.​stat08035
18.
Zurück zum Zitat Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.B.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 105–128. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-41095-6 Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.B.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 105–128. Springer, Berlin (2013). https://​doi.​org/​10.​1007/​978-3-642-41095-6
19.
Zurück zum Zitat Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable adaptive cubature using digital sequences. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 367–383. Springer, Berlin (2016). ArXiv:1410.8615 [math.NA] Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable adaptive cubature using digital sequences. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 367–383. Springer, Berlin (2016). ArXiv:​1410.​8615 [math.NA]
20.
Zurück zum Zitat Hickernell, F.J., Jiménez Rugama, Ll.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer (2018). https://doi.org/10.1007/978-3-319-72456-0 Hickernell, F.J., Jiménez Rugama, Ll.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer (2018). https://​doi.​org/​10.​1007/​978-3-319-72456-0
24.
Zurück zum Zitat Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation: Festschrift in Honour of Pierre L’Ecuyer, pp. 301–318. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10193-9_15 Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation: Festschrift in Honour of Pierre L’Ecuyer, pp. 301–318. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-10193-9_​15
25.
Zurück zum Zitat Jiang, L.: Guaranteed adaptive Monte Carlo methods for estimating means of random variables. Ph.D. thesis, Illinois Institute of Technology (2016) Jiang, L.: Guaranteed adaptive Monte Carlo methods for estimating means of random variables. Ph.D. thesis, Illinois Institute of Technology (2016)
27.
Zurück zum Zitat Jiménez Rugama, Ll.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 407–422. Springer, Berlin (2016). ArXiv:1411.1966 Jiménez Rugama, Ll.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 407–422. Springer, Berlin (2016). ArXiv:​1411.​1966
29.
Zurück zum Zitat Joe, S., Kuo, F.Y.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003)MathSciNetCrossRef Joe, S., Kuo, F.Y.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003)MathSciNetCrossRef
30.
Zurück zum Zitat Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)MathSciNetCrossRef Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)MathSciNetCrossRef
31.
Zurück zum Zitat Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015) Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015)
35.
Zurück zum Zitat L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC and RQMC point sets. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, 2020, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2022) L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC and RQMC point sets. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, 2020, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2022)
36.
Zurück zum Zitat L’Ecuyer, P., Meliani, L., Vaucher, J.: Ssj: a framework for stochastic simulation in Java. In: Proceedings of the Winter Simulation Conference, vol. 1, pp. 234–242. IEEE (2002) L’Ecuyer, P., Meliani, L., Vaucher, J.: Ssj: a framework for stochastic simulation in Java. In: Proceedings of the Winter Simulation Conference, vol. 1, pp. 234–242. IEEE (2002)
37.
Zurück zum Zitat L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)MathSciNetCrossRef L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)MathSciNetCrossRef
38.
Zurück zum Zitat L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte carlo and quasi–monte carlo density estimation via conditioning. INFORMS J. Comput. 34(3), 1729–1748 (2022) L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte carlo and quasi–monte carlo density estimation via conditioning. INFORMS J. Comput. 34(3), 1729–1748 (2022)
39.
Zurück zum Zitat Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992) Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)
40.
Zurück zum Zitat Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. No. 12 in EMS Tracts in Mathematics. European Mathematical Society, Zürich (2010) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. No. 12 in EMS Tracts in Mathematics. European Mathematical Society, Zürich (2010)
42.
Zurück zum Zitat Owen, A.B.: On dropping the first Sobol’ point. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 71–86. Springer, Cham (2022). https://arxiv.org/pdf/2008.08051.pdf Owen, A.B.: On dropping the first Sobol’ point. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 71–86. Springer, Cham (2022). https://​arxiv.​org/​pdf/​2008.​08051.​pdf
46.
Zurück zum Zitat Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portfolio Manag. 22, 113–120 (1995)CrossRef Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portfolio Manag. 22, 113–120 (1995)CrossRef
47.
Zurück zum Zitat Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)
49.
Zurück zum Zitat Potts, D., Schmischke, M.: Approximation of high-dimensional periodic functions with fourier-based methods. SIAM J. Numer. Anal. 59(5), 2393–2429 (2021) Potts, D., Schmischke, M.: Approximation of high-dimensional periodic functions with fourier-based methods. SIAM J. Numer. Anal. 59(5), 2393–2429 (2021)
50.
Zurück zum Zitat Puchhammer, F., Ben Abdellah, A., L’Ecuyer, P.: Variance reduction with Array-RQMC for tau-leaping simulation of stochastic biological and chemical reaction networks. Bull. Math. Biol. 83(8), 91 (2021)MathSciNetCrossRef Puchhammer, F., Ben Abdellah, A., L’Ecuyer, P.: Variance reduction with Array-RQMC for tau-leaping simulation of stochastic biological and chemical reaction networks. Bull. Math. Biol. 83(8), 91 (2021)MathSciNetCrossRef
55.
Zurück zum Zitat Seelinger, L., Reinarz, A., Benezech, J., Lykkegaard, M.B., Tamellini, L., Scheichl, R.: Lowering the entry bar to HPC-scale uncertainty quantification (2023) Seelinger, L., Reinarz, A., Benezech, J., Lykkegaard, M.B., Tamellini, L., Scheichl, R.: Lowering the entry bar to HPC-scale uncertainty quantification (2023)
56.
Zurück zum Zitat Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)CrossRef Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)CrossRef
57.
Zurück zum Zitat Smith, A.M., Katz, D.S., Niemeyer, K.E.: Software citation principles. PeerJ Comput. Sci. 2, e86 (2016)CrossRef Smith, A.M., Katz, D.S., Niemeyer, K.E.: Software citation principles. PeerJ Comput. Sci. 2, e86 (2016)CrossRef
58.
Zurück zum Zitat Sorokin, A.G., Jagadeeswaran, R.: Monte Carlo for vector functions of integrals. In: Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Linz, Austria, July 2022, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2023+). Submitted for publication Sorokin, A.G., Jagadeeswaran, R.: Monte Carlo for vector functions of integrals. In: Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Linz, Austria, July 2022, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2023+). Submitted for publication
60.
Zurück zum Zitat The MathWorks Inc: MATLAB R2022b. Natick, MA (2022) The MathWorks Inc: MATLAB R2022b. Natick, MA (2022)
61.
Zurück zum Zitat The Numerical Algorithms Group: The NAG Library, 27th edn. Oxford, Mark (2021) The Numerical Algorithms Group: The NAG Library, 27th edn. Oxford, Mark (2021)
62.
Zurück zum Zitat Tong, X., Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, Ll.A., Jagadeeswaran, R., Zhang, K., Zhang, Y., Zhou, X.: Guaranteed automatic integration library (GAIL): an open-source MATLAB library for function approximation, minimization, and integration. J. Open Res. Softw. 10, 7 (2022). https://doi.org/10.5334/jors.381 Tong, X., Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, Ll.A., Jagadeeswaran, R., Zhang, K., Zhang, Y., Zhou, X.: Guaranteed automatic integration library (GAIL): an open-source MATLAB library for function approximation, minimization, and integration. J. Open Res. Softw. 10, 7 (2022). https://​doi.​org/​10.​5334/​jors.​381
64.
Zurück zum Zitat Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., Contributors: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., Contributors: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)
65.
Zurück zum Zitat Woźniakowski, H.: Efficiency of quasi-Monte Carlo algorithms for high dimensions. In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 114–136. Springer, Berlin (2000)CrossRef Woźniakowski, H.: Efficiency of quasi-Monte Carlo algorithms for high dimensions. In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 114–136. Springer, Berlin (2000)CrossRef
Metadaten
Titel
Challenges in Developing Great Quasi-Monte Carlo Software
verfasst von
Sou-Cheng T. Choi
Yuhan Ding
Fred J. Hickernell
Jagadeeswaran Rathinavel
Aleksei G. Sorokin
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_9