Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Challenges in Near-Critical Microchannel Flows

verfasst von : Lin Chen

Erschienen in: Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The near-critical fluid has become a hot topic in recent years. This chapter reviewed and summarized the recent developments in near-critical fluid flow and hat transfer studies. Currently only several research groups are focused on the thermal-physical details. While there are a lot many application proposals for near-critical fluids, there are a lot many unknowns in the fundamental aspects. The main results on heat transfer correlations and pressure losses, however a lot many discrepancies still exist and it is largely dependent on specific system designs, especially for microscale systems. The analysis of mechanisms is lacked for near-critical region. More importantly, the nature of Piston Effect and thermal mechanical process in the near-critical region is still not well explained. Multi- spatial scales and multi- time scales analysis will be necessary for better understanding of the near-critical dynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kumar V, Paraschivoiu M, Nigam KDP (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66:1329–1373CrossRef Kumar V, Paraschivoiu M, Nigam KDP (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66:1329–1373CrossRef
2.
Zurück zum Zitat Zhao CX, He LZ, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–1479CrossRef Zhao CX, He LZ, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–1479CrossRef
3.
Zurück zum Zitat Kuang G, Ohadi MM, Zhao Y (2004) Experimental study on gas cooling heat transfer for supercritical CO2 in microchannels. In Proceedings of the 2nd international conference on microchannels and minichannels, June 17–19, Rochester, New York, USA, pp 325–332 Kuang G, Ohadi MM, Zhao Y (2004) Experimental study on gas cooling heat transfer for supercritical CO2 in microchannels. In Proceedings of the 2nd international conference on microchannels and minichannels, June 17–19, Rochester, New York, USA, pp 325–332
4.
Zurück zum Zitat Wang Q, Guan YX, Yao SJ, Zhu ZQ (2011) Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J Supercrit Fluids 56:97–104CrossRef Wang Q, Guan YX, Yao SJ, Zhu ZQ (2011) Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J Supercrit Fluids 56:97–104CrossRef
5.
Zurück zum Zitat Chen L, Zhang XR (2011) Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter. ASME J Heat Transfer 133:2505–2513 Chen L, Zhang XR (2011) Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter. ASME J Heat Transfer 133:2505–2513
6.
Zurück zum Zitat Zhang XR, Yamaguchi H, Uneno D (2007) Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 32:2617–2628CrossRef Zhang XR, Yamaguchi H, Uneno D (2007) Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 32:2617–2628CrossRef
7.
Zurück zum Zitat Zhang XR, Yamaguchi H (2008) An experimental study on evacuated tube solar collector using supercritical CO2. Appl Therm Eng 28:1225–1233CrossRef Zhang XR, Yamaguchi H (2008) An experimental study on evacuated tube solar collector using supercritical CO2. Appl Therm Eng 28:1225–1233CrossRef
8.
Zurück zum Zitat Dimmic GR, Chatoorgoon VV, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38CrossRef Dimmic GR, Chatoorgoon VV, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38CrossRef
9.
Zurück zum Zitat Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30CrossRef Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30CrossRef
10.
Zurück zum Zitat Zhang XR, Yamaguchi H, Uneno D (2007) Thermodynamic analysis of the CO2-based Rankine cycle powered by solar energy. Int J Energy Res 31:1414–1424CrossRef Zhang XR, Yamaguchi H, Uneno D (2007) Thermodynamic analysis of the CO2-based Rankine cycle powered by solar energy. Int J Energy Res 31:1414–1424CrossRef
11.
Zurück zum Zitat Ameel TA, Warrington RO, Wegeng RS, Drost MK (1997) Miniaturization technologies applied to energy systems. Energy Convers Manag 38:969–982CrossRef Ameel TA, Warrington RO, Wegeng RS, Drost MK (1997) Miniaturization technologies applied to energy systems. Energy Convers Manag 38:969–982CrossRef
12.
Zurück zum Zitat Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191CrossRef Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191CrossRef
13.
Zurück zum Zitat Sierra-Pallares J, Marchisio DL, Alonso E, Parra-Santos MT, Castro F, Cocero MJ (2011) Quantification of mixing efficiency in turbulent supercritical water hydrothermal reactors. Chem Eng Sci 66:1576–1589CrossRef Sierra-Pallares J, Marchisio DL, Alonso E, Parra-Santos MT, Castro F, Cocero MJ (2011) Quantification of mixing efficiency in turbulent supercritical water hydrothermal reactors. Chem Eng Sci 66:1576–1589CrossRef
15.
Zurück zum Zitat Carles P (2010) A brief review of the thermophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11CrossRef Carles P (2010) A brief review of the thermophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11CrossRef
16.
Zurück zum Zitat Blood PJ, Denyer JP, Azzopardi BJ, Poliakoff M, Lester E (2004) A versatile flow visualization technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS). Chem Eng Sci 59:2853–2861CrossRef Blood PJ, Denyer JP, Azzopardi BJ, Poliakoff M, Lester E (2004) A versatile flow visualization technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS). Chem Eng Sci 59:2853–2861CrossRef
17.
Zurück zum Zitat Chen L, Zhang XR (2014) Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection. Energy Convers Manag 77:173–182CrossRef Chen L, Zhang XR (2014) Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection. Energy Convers Manag 77:173–182CrossRef
18.
Zurück zum Zitat Ducoulombier M, Colasson S, Haberschill P, Tingaud F (2011) Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions. Int J Refrig 34:827–833CrossRef Ducoulombier M, Colasson S, Haberschill P, Tingaud F (2011) Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions. Int J Refrig 34:827–833CrossRef
19.
Zurück zum Zitat Falk FL, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65:405–411CrossRef Falk FL, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65:405–411CrossRef
20.
Zurück zum Zitat Rosa P, Karayiannis TG, Collins MW (2009) Single-phase heat transfer in microchannels: the importance of scaling effects. Appl Therm Eng 29:3447–3468CrossRef Rosa P, Karayiannis TG, Collins MW (2009) Single-phase heat transfer in microchannels: the importance of scaling effects. Appl Therm Eng 29:3447–3468CrossRef
21.
Zurück zum Zitat Gad-et-Hak M (2009) The fluid mechanics of micro devices-the freeman scholar lecture. ASME J Fluid Eng 121:5–33CrossRef Gad-et-Hak M (2009) The fluid mechanics of micro devices-the freeman scholar lecture. ASME J Fluid Eng 121:5–33CrossRef
22.
Zurück zum Zitat Ghosal S (2002) Lubrication theory for electro-osmotic flow in a micro fluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128CrossRefMATH Ghosal S (2002) Lubrication theory for electro-osmotic flow in a micro fluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128CrossRefMATH
23.
Zurück zum Zitat Adams TM, Dowling MF, Abdel-Khalik SI, Jeter SM (1999) Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels. Int J Heat Mass Trans 42:4411–4415CrossRef Adams TM, Dowling MF, Abdel-Khalik SI, Jeter SM (1999) Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels. Int J Heat Mass Trans 42:4411–4415CrossRef
24.
Zurück zum Zitat Celata GP (2004) Heat transfer and fluid flow in microchannels. Begell House Inc., New York Celata GP (2004) Heat transfer and fluid flow in microchannels. Begell House Inc., New York
25.
Zurück zum Zitat Rostami AA, Mujumdar AS, N. Saniei N (2002) Flow and heat transfer for gas flowing in microchannels: a review. Heat Mass Trans 38:359–367CrossRefMATH Rostami AA, Mujumdar AS, N. Saniei N (2002) Flow and heat transfer for gas flowing in microchannels: a review. Heat Mass Trans 38:359–367CrossRefMATH
26.
Zurück zum Zitat Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651CrossRef Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651CrossRef
27.
Zurück zum Zitat Zhang XR, Chen L, Yamaguchi H (2010) Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int J Heat Mass Trans 53:4112–4122CrossRefMATH Zhang XR, Chen L, Yamaguchi H (2010) Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int J Heat Mass Trans 53:4112–4122CrossRefMATH
28.
Zurück zum Zitat Chen L, Zhang XR, Yamaguchi H, Liu ZS (2010) Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int J Heat Mass Trans 53:4101–4111CrossRefMATH Chen L, Zhang XR, Yamaguchi H, Liu ZS (2010) Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int J Heat Mass Trans 53:4101–4111CrossRefMATH
29.
Zurück zum Zitat Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibrium in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41:2256–2260CrossRef Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibrium in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41:2256–2260CrossRef
30.
Zurück zum Zitat Boukari H, Shaumeyer JN, Briggs ME, Gammon RW (1990) Critical speeding up in pure fluids. Phys Rev A 41:2260–2264CrossRef Boukari H, Shaumeyer JN, Briggs ME, Gammon RW (1990) Critical speeding up in pure fluids. Phys Rev A 41:2260–2264CrossRef
31.
Zurück zum Zitat Zappoli B, Bailly D, Garrabos Y, Neindre BL, Guenoun P, Beysens D (1990) Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys Rev A 41:2264–2268CrossRef Zappoli B, Bailly D, Garrabos Y, Neindre BL, Guenoun P, Beysens D (1990) Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys Rev A 41:2264–2268CrossRef
32.
Zurück zum Zitat Duffey RB, Pioro IL (2005) Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey). Nucl Eng Des 235:913–924CrossRef Duffey RB, Pioro IL (2005) Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey). Nucl Eng Des 235:913–924CrossRef
33.
Zurück zum Zitat Moysseytsev A, Sienicki JJ (2008) Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. Nucl Eng Des 238:2094–2105CrossRef Moysseytsev A, Sienicki JJ (2008) Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. Nucl Eng Des 238:2094–2105CrossRef
34.
Zurück zum Zitat Pioro IL, khartabil HF, Duffey RB (2004) Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey). Nucl Eng Des 230:69–91CrossRef Pioro IL, khartabil HF, Duffey RB (2004) Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey). Nucl Eng Des 230:69–91CrossRef
35.
Zurück zum Zitat Cheng LX, Ribatski G, Thome JR (2008) Analysis of supercritical CO2 cooling in macro- and micro-channels. Int J Refrigerat 31:1301–1316CrossRef Cheng LX, Ribatski G, Thome JR (2008) Analysis of supercritical CO2 cooling in macro- and micro-channels. Int J Refrigerat 31:1301–1316CrossRef
36.
Zurück zum Zitat NIST Standard Reference Database-REFPROP, Version 8.0, 2006 NIST Standard Reference Database-REFPROP, Version 8.0, 2006
37.
Zurück zum Zitat Zappoli B, Beysens D, Garrabos Y (2015) Heat transfer and related effects in supercritical fluids. Springer, New York, LondonCrossRefMATH Zappoli B, Beysens D, Garrabos Y (2015) Heat transfer and related effects in supercritical fluids. Springer, New York, LondonCrossRefMATH
38.
Zurück zum Zitat Chen L, Zhang XR, Cao SM, Bai H (2012) Study of trans-critical CO2 natural convection flow with unsteady heat input and its implications on system control. Int J Heat Mass Trans 55:7119–7132CrossRef Chen L, Zhang XR, Cao SM, Bai H (2012) Study of trans-critical CO2 natural convection flow with unsteady heat input and its implications on system control. Int J Heat Mass Trans 55:7119–7132CrossRef
39.
Zurück zum Zitat Chen L, Zhang XR, Jiang J (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transfer 136:052501CrossRef Chen L, Zhang XR, Jiang J (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transfer 136:052501CrossRef
40.
Zurück zum Zitat van der Waals (1873) Over de Continuiteit van den Gas- en Voleistoftoestand. In: Sijthoff (ed) Leiden, The Netherlands van der Waals (1873) Over de Continuiteit van den Gas- en Voleistoftoestand. In: Sijthoff (ed) Leiden, The Netherlands
41.
Zurück zum Zitat Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley & Sons Inc., New York, USAMATH Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley & Sons Inc., New York, USAMATH
42.
Zurück zum Zitat Onuki A (2004) Phase transition dynamics. Cambridge University Press, UKMATH Onuki A (2004) Phase transition dynamics. Cambridge University Press, UKMATH
43.
Zurück zum Zitat Justin JZ (2002) Quantum field theory and critical phenomena, 4th edn. Oxford University Press, OxfordCrossRef Justin JZ (2002) Quantum field theory and critical phenomena, 4th edn. Oxford University Press, OxfordCrossRef
44.
Zurück zum Zitat Kawasaki K (1970) Kinetic equations and time correlation functions of critical fluctuations. Ann Phys 61:1–56CrossRef Kawasaki K (1970) Kinetic equations and time correlation functions of critical fluctuations. Ann Phys 61:1–56CrossRef
45.
Zurück zum Zitat Jounet A, Zappoli B, Mojtabi A (2000) Rapid thermal relaxation in near-critical fluids and critical speeding up: Discrepancies caused by boundary effects. Phys Rev Lett 84:3224–3228CrossRef Jounet A, Zappoli B, Mojtabi A (2000) Rapid thermal relaxation in near-critical fluids and critical speeding up: Discrepancies caused by boundary effects. Phys Rev Lett 84:3224–3228CrossRef
46.
Zurück zum Zitat Chiwata Y, Onuki A (2001) Thermal plumes and convection in highly compressible fluids. Phys Rev Lett 87:114301CrossRef Chiwata Y, Onuki A (2001) Thermal plumes and convection in highly compressible fluids. Phys Rev Lett 87:114301CrossRef
47.
Zurück zum Zitat Bringer BP, Smith JM (1957) Heat transfer in the critical region. AIChE J 3:49–55CrossRef Bringer BP, Smith JM (1957) Heat transfer in the critical region. AIChE J 3:49–55CrossRef
48.
Zurück zum Zitat Shiralkar BS, Griffith P (1969) Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes. ASME J Heat Transf 91:27–36CrossRef Shiralkar BS, Griffith P (1969) Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes. ASME J Heat Transf 91:27–36CrossRef
49.
Zurück zum Zitat Tanaka H, Nishiwaki N, Hirata M, Tsuge A (1971) Forced convection heat transfer to fluid near critical point flowing in circular tube. Int J Heat Mass Transf 14:739–750CrossRef Tanaka H, Nishiwaki N, Hirata M, Tsuge A (1971) Forced convection heat transfer to fluid near critical point flowing in circular tube. Int J Heat Mass Transf 14:739–750CrossRef
50.
Zurück zum Zitat Fewster J, Jackson JD (2004) Experiments on supercritical pressure convective heat transfer having relevance to SCWR. In: Proceedings of international congress on advances in nuclear power plants (ICAPP’04), 13–17 June 2004, Pittsburge, USA, Paper No. 4342 Fewster J, Jackson JD (2004) Experiments on supercritical pressure convective heat transfer having relevance to SCWR. In: Proceedings of international congress on advances in nuclear power plants (ICAPP’04), 13–17 June 2004, Pittsburge, USA, Paper No. 4342
51.
Zurück zum Zitat Pital SS, Robinson DM, Groll EA et al (1998) Heat transfer from supercritical carbon dioxide in tube flow: a critical review. HVAC & Research 4(3):281–301CrossRef Pital SS, Robinson DM, Groll EA et al (1998) Heat transfer from supercritical carbon dioxide in tube flow: a critical review. HVAC & Research 4(3):281–301CrossRef
52.
Zurück zum Zitat Widom B (1965) Equations of state in neighborhood of critical point. J Chem Phys 43:3898–3905CrossRef Widom B (1965) Equations of state in neighborhood of critical point. J Chem Phys 43:3898–3905CrossRef
53.
Zurück zum Zitat Kadnoff LP (1966) Spin-spin correlation in 2-dimensional Ising model. Nuovo Cimento B 44(2):276CrossRef Kadnoff LP (1966) Spin-spin correlation in 2-dimensional Ising model. Nuovo Cimento B 44(2):276CrossRef
54.
Zurück zum Zitat Wilson KG (1971) Renormalization group and critical phenomena. 1. Renormalization group and Kadnaff scaling picture. Phys Rev B 4:3174–3183CrossRefMATH Wilson KG (1971) Renormalization group and critical phenomena. 1. Renormalization group and Kadnaff scaling picture. Phys Rev B 4:3174–3183CrossRefMATH
55.
Zurück zum Zitat Pettersen J, Rieberer R, Munkejord ST (2000) Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in microchannel tubes. Final Technical Report for United States Army, European Research Office of the U.S. Army, London, England. Contract No. N68171-99-M-5674 Pettersen J, Rieberer R, Munkejord ST (2000) Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in microchannel tubes. Final Technical Report for United States Army, European Research Office of the U.S. Army, London, England. Contract No. N68171-99-M-5674
56.
Zurück zum Zitat Liao SM, Zhao TS (2002) An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. Int J Heat Mass Trans 45:5025–5034CrossRef Liao SM, Zhao TS (2002) An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. Int J Heat Mass Trans 45:5025–5034CrossRef
57.
Zurück zum Zitat Liao SM, Zhao TS (2002) Measurement of heat transfer coefficient from supercritical carbon dioxide flowing in horizontal mini/micro channels. ASME J Heat Transfer 124:413–420CrossRef Liao SM, Zhao TS (2002) Measurement of heat transfer coefficient from supercritical carbon dioxide flowing in horizontal mini/micro channels. ASME J Heat Transfer 124:413–420CrossRef
58.
Zurück zum Zitat Kuang G, Ohadi MM, Zhao Y (2003) Experimental study of miscible and immiscible oil effects on heat transfer coefficients and pressure drop in microchannel gas cooling of supercritical CO2. In: Proceedings ASME summer heat transfer conference, Las Vegas, Nevada, USA, June 21–23, pp 671–675 Kuang G, Ohadi MM, Zhao Y (2003) Experimental study of miscible and immiscible oil effects on heat transfer coefficients and pressure drop in microchannel gas cooling of supercritical CO2. In: Proceedings ASME summer heat transfer conference, Las Vegas, Nevada, USA, June 21–23, pp 671–675
59.
Zurück zum Zitat Asinari P (2005) Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure. Int J Heat Mass Trans 48:3864–3879CrossRefMATH Asinari P (2005) Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure. Int J Heat Mass Trans 48:3864–3879CrossRefMATH
60.
Zurück zum Zitat Jiang PX, Zhang Y, Shi RF (2008) Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers. Int J Therm Sci 47:998–1011CrossRef Jiang PX, Zhang Y, Shi RF (2008) Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers. Int J Therm Sci 47:998–1011CrossRef
61.
Zurück zum Zitat Li ZH (2008) Research on convection heat transfer of CO2 at supercritical pressures in mini/micro scale tubes. Doctoral thesis, Tsinghua University, Beijing Li ZH (2008) Research on convection heat transfer of CO2 at supercritical pressures in mini/micro scale tubes. Doctoral thesis, Tsinghua University, Beijing
62.
Zurück zum Zitat Frohlich T, Beysens D, Garrabos Y (2006) Piston effect induced thermal jets in near-critical fluids. Phys Rev E 74:046307CrossRef Frohlich T, Beysens D, Garrabos Y (2006) Piston effect induced thermal jets in near-critical fluids. Phys Rev E 74:046307CrossRef
63.
Zurück zum Zitat Zappoli B, Carles P (1995) Thermoacoustic nature of the critical speeding-up. Euro J Mech B Fluids 14:41–65MATH Zappoli B, Carles P (1995) Thermoacoustic nature of the critical speeding-up. Euro J Mech B Fluids 14:41–65MATH
64.
Zurück zum Zitat Bailly D, Zappoli B (2000) Hydrodynamic theory of density relaxation in near-critical fluids. Phys Rev E 62:2353–2368CrossRef Bailly D, Zappoli B (2000) Hydrodynamic theory of density relaxation in near-critical fluids. Phys Rev E 62:2353–2368CrossRef
65.
Zurück zum Zitat Jounet A, Mojtabi A, Ouazzani J, Zappoli B (2000) Low-frequency vibrations in a near critical fluid. Phys Fluids 12:197–205CrossRefMATH Jounet A, Mojtabi A, Ouazzani J, Zappoli B (2000) Low-frequency vibrations in a near critical fluid. Phys Fluids 12:197–205CrossRefMATH
66.
Zurück zum Zitat Onuki A (2007) Thermoacoustic effects in superciritcal fluids near the critical point: resonace, piston effect and acoustic emission and reflection. Phys Rev E 76:061126MathSciNetCrossRef Onuki A (2007) Thermoacoustic effects in superciritcal fluids near the critical point: resonace, piston effect and acoustic emission and reflection. Phys Rev E 76:061126MathSciNetCrossRef
67.
Zurück zum Zitat Fukukawa A, Onuki A (2002) Convective heat transport in compressible fluids. Phys Rev E 66:016302CrossRef Fukukawa A, Onuki A (2002) Convective heat transport in compressible fluids. Phys Rev E 66:016302CrossRef
68.
Zurück zum Zitat Accary G, Raspo I, Bontoux P, Zappoli B (2005) Rayleith-Benard and Schwarzschild instability in a supercritical fluid. Adv Space Res 36:11–16CrossRefMATH Accary G, Raspo I, Bontoux P, Zappoli B (2005) Rayleith-Benard and Schwarzschild instability in a supercritical fluid. Adv Space Res 36:11–16CrossRefMATH
69.
Zurück zum Zitat Accary G, Bontoux P, Zappoli B (2007) Convection in a supercritical fluid: a reduced model for geophysical flows. Phys Fluids 19:014104CrossRefMATH Accary G, Bontoux P, Zappoli B (2007) Convection in a supercritical fluid: a reduced model for geophysical flows. Phys Fluids 19:014104CrossRefMATH
70.
Zurück zum Zitat Zappoli B, Amiroudine S, Carles P, Ouazzani J (1996) Thermoacoustic and buoyancy-driven transport in a square side-heated cavity filled with a near-critical fluid. J Fluid Mech 316:53–72CrossRefMATH Zappoli B, Amiroudine S, Carles P, Ouazzani J (1996) Thermoacoustic and buoyancy-driven transport in a square side-heated cavity filled with a near-critical fluid. J Fluid Mech 316:53–72CrossRefMATH
71.
Zurück zum Zitat Accary G, Bontoux P, Zappoli B (2009) Turbulent Rayleigh-Benard convection in a near-critical fluid by three-dimensional direct numerical simulation. J Fluid Mech 619:127–145CrossRefMATH Accary G, Bontoux P, Zappoli B (2009) Turbulent Rayleigh-Benard convection in a near-critical fluid by three-dimensional direct numerical simulation. J Fluid Mech 619:127–145CrossRefMATH
72.
Zurück zum Zitat Kelvin Lord, Thomson William (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377 Kelvin Lord, Thomson William (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377
73.
Zurück zum Zitat Helmholtz H (1868) Über discontinuierliche Flüssigkeits-Bewegungen (On the discontinuous movements of fluids). Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin (Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin) 23:215–228MATH Helmholtz H (1868) Über discontinuierliche Flüssigkeits-Bewegungen (On the discontinuous movements of fluids). Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin (Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin) 23:215–228MATH
74.
Zurück zum Zitat Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, OxfordMATH Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, OxfordMATH
75.
Zurück zum Zitat Chatoorgoon V, Voodi A, Upadhye P (2005) The stability boundary for supercritical flow in natural-convection loops. Part II: CO2 and H2. Nucl Eng Des 235:2581–2593CrossRef Chatoorgoon V, Voodi A, Upadhye P (2005) The stability boundary for supercritical flow in natural-convection loops. Part II: CO2 and H2. Nucl Eng Des 235:2581–2593CrossRef
76.
Zurück zum Zitat Jain PK, uddin Rizwan (2008) Numerical analysis of supercritical flow instabilities in a natural circulation loop. Nucl Eng Des 238:1947–1957CrossRef Jain PK, uddin Rizwan (2008) Numerical analysis of supercritical flow instabilities in a natural circulation loop. Nucl Eng Des 238:1947–1957CrossRef
77.
Zurück zum Zitat Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13CrossRef Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13CrossRef
78.
Zurück zum Zitat Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Trans 64:202–211CrossRef Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Trans 64:202–211CrossRef
79.
Zurück zum Zitat Shen B, Zhang P (2011) Thermoacoustic waves along the critical isochore. Phys Rev E 83:011115CrossRef Shen B, Zhang P (2011) Thermoacoustic waves along the critical isochore. Phys Rev E 83:011115CrossRef
80.
Zurück zum Zitat Zhang P, Shen B (2009) Thermoacoustic wave propagation and reflection near the liquid-gas critical point. Phys Rev E 79:060103MathSciNetCrossRef Zhang P, Shen B (2009) Thermoacoustic wave propagation and reflection near the liquid-gas critical point. Phys Rev E 79:060103MathSciNetCrossRef
81.
Zurück zum Zitat Shen B, Zhang P (2013) An overview of heat transfer near the liquidegas critical point under the influence of the piston effect: phenomena and theory. Int J Therm Sci 71:1–19MathSciNetCrossRef Shen B, Zhang P (2013) An overview of heat transfer near the liquidegas critical point under the influence of the piston effect: phenomena and theory. Int J Therm Sci 71:1–19MathSciNetCrossRef
82.
Zurück zum Zitat Amiroudine S, Zappoli B (2003) Piston Effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303CrossRef Amiroudine S, Zappoli B (2003) Piston Effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303CrossRef
83.
Zurück zum Zitat Simon HA, Eckert ERG (1963) Laminar free convection in carbon dioxide near its critical point. Int J Heat Mass Trans 6:681–690CrossRef Simon HA, Eckert ERG (1963) Laminar free convection in carbon dioxide near its critical point. Int J Heat Mass Trans 6:681–690CrossRef
84.
Zurück zum Zitat Klein H, Wanders K (1981) Holographic interferometry near gas/liquid critical points. AIAA J 20:946–949CrossRef Klein H, Wanders K (1981) Holographic interferometry near gas/liquid critical points. AIAA J 20:946–949CrossRef
85.
Zurück zum Zitat Klein H, Feuerbacher B (1987) Gravity influence on thermal relaxation near the critical point. Phys Lett A 123:183–187CrossRef Klein H, Feuerbacher B (1987) Gravity influence on thermal relaxation near the critical point. Phys Lett A 123:183–187CrossRef
86.
Zurück zum Zitat Frohlich T, Guenoun P, Bonetti M, Perrot F, Beysens D, Garrabos Y, Neindre B, Bravais P (1996) Adiabatic versus conductive heat transfer in off-critical SF6 in the absence of convection. Phys Rev E 54:1544–1549CrossRef Frohlich T, Guenoun P, Bonetti M, Perrot F, Beysens D, Garrabos Y, Neindre B, Bravais P (1996) Adiabatic versus conductive heat transfer in off-critical SF6 in the absence of convection. Phys Rev E 54:1544–1549CrossRef
87.
Zurück zum Zitat Wilkinson RA (1998) Density relaxation of liquid-vapor critical fluids in earth’s gravity. Int J Thermophys 19:1175–1183CrossRef Wilkinson RA (1998) Density relaxation of liquid-vapor critical fluids in earth’s gravity. Int J Thermophys 19:1175–1183CrossRef
88.
Zurück zum Zitat Garrabos Y, Bonetti M, Beysens D, Perrot F, Frohlich T, Carles P, Zappoli B (1998) Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: theory and experiments. Phys Rev E 57:5665–5681CrossRef Garrabos Y, Bonetti M, Beysens D, Perrot F, Frohlich T, Carles P, Zappoli B (1998) Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: theory and experiments. Phys Rev E 57:5665–5681CrossRef
89.
Zurück zum Zitat Garrabos Y, Beysens D, Lecountre C, Dejoan A, Polezhaev V, Emelianov V (2007) Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys Rev E 75:056317CrossRef Garrabos Y, Beysens D, Lecountre C, Dejoan A, Polezhaev V, Emelianov V (2007) Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys Rev E 75:056317CrossRef
90.
Zurück zum Zitat Nakano A, Shiraishi M, Murakami M (2001) Application of laser holography interferometer to heat transport phenomena near the critical point of nitrogen. Cryogenics 41:429–435CrossRef Nakano A, Shiraishi M, Murakami M (2001) Application of laser holography interferometer to heat transport phenomena near the critical point of nitrogen. Cryogenics 41:429–435CrossRef
91.
Zurück zum Zitat Nakano A, Shiraishi M (2005) Piston effect in supercritical nitrogen around the pseudo-critical line. Int Commun Heat mass Trans 32:1152–1164CrossRef Nakano A, Shiraishi M (2005) Piston effect in supercritical nitrogen around the pseudo-critical line. Int Commun Heat mass Trans 32:1152–1164CrossRef
92.
Zurück zum Zitat Nakano A, Shiraishi M (2005) Visualization for heat and mass transport phenomena in supercritical artificial air. Cryogenics 45:557–565CrossRef Nakano A, Shiraishi M (2005) Visualization for heat and mass transport phenomena in supercritical artificial air. Cryogenics 45:557–565CrossRef
93.
Zurück zum Zitat Maekawa T, Ishii K, Ohnishi M, Yoshihara S (2002) Convective instabilities induced in a critical fluid. Adv Space Res 29:589–598CrossRef Maekawa T, Ishii K, Ohnishi M, Yoshihara S (2002) Convective instabilities induced in a critical fluid. Adv Space Res 29:589–598CrossRef
94.
Zurück zum Zitat Ohnishi M, Yoshihara S, Sakurai M, Miura Y, Ishikawa M, Kobayshi H, Takenouchi T, Kawai J, Honda K, Matsumoto M (2005) Ultra-sensitive high-speed density measurement of the ‘piston effect’ in a critical fluid. Micrograv Sci Technol 16:306–310CrossRef Ohnishi M, Yoshihara S, Sakurai M, Miura Y, Ishikawa M, Kobayshi H, Takenouchi T, Kawai J, Honda K, Matsumoto M (2005) Ultra-sensitive high-speed density measurement of the ‘piston effect’ in a critical fluid. Micrograv Sci Technol 16:306–310CrossRef
95.
Zurück zum Zitat Miura Y, Yoshihara S, Ohnishi M, Honda K, Matsumoto M, Kawai J, Ishikawa M, Kobayashi H, Onuki A (2006) High-speed observation of the piston effect near the gas-liquid critical point. Phys Rev E 74:010101 (R) Miura Y, Yoshihara S, Ohnishi M, Honda K, Matsumoto M, Kawai J, Ishikawa M, Kobayashi H, Onuki A (2006) High-speed observation of the piston effect near the gas-liquid critical point. Phys Rev E 74:010101 (R)
96.
Zurück zum Zitat Beysens D, Frohlich T, Garrabos Y (2011) Heat can cool near-critical fluids. Phys Rev E 84:051201CrossRef Beysens D, Frohlich T, Garrabos Y (2011) Heat can cool near-critical fluids. Phys Rev E 84:051201CrossRef
97.
Zurück zum Zitat Assenheimer M, Steinberg V (1993) Rayleigh-Bénard convection near the gas-liquid critical point. Phys Rev Lett 70:3888CrossRef Assenheimer M, Steinberg V (1993) Rayleigh-Bénard convection near the gas-liquid critical point. Phys Rev Lett 70:3888CrossRef
98.
Zurück zum Zitat Azuma H, Yoshihara S, Onishi M, Ishii K, Masuda S, Maekawa T (1999) Natural convection driven in CO2 near its critical point under terrestrial gravity conditions. Int J Heat Mass Transf 42:771–774CrossRef Azuma H, Yoshihara S, Onishi M, Ishii K, Masuda S, Maekawa T (1999) Natural convection driven in CO2 near its critical point under terrestrial gravity conditions. Int J Heat Mass Transf 42:771–774CrossRef
99.
Zurück zum Zitat Melnikov DE, Ryzhkov II, Mialdun A, Shevtsova V (2008) Thermovibrational convection in microgravity: preparation of a parabolic flight experiment. Micrograv Sci Tech 20:29–39CrossRef Melnikov DE, Ryzhkov II, Mialdun A, Shevtsova V (2008) Thermovibrational convection in microgravity: preparation of a parabolic flight experiment. Micrograv Sci Tech 20:29–39CrossRef
100.
Zurück zum Zitat Beysens D, Chatain D, Nikolayev VS, Ouazzani J, Garrabos Y (2010) Possibility of long-distance heat transport in weightlessness using supercritical fluids. Phys Rev E 82:061126CrossRef Beysens D, Chatain D, Nikolayev VS, Ouazzani J, Garrabos Y (2010) Possibility of long-distance heat transport in weightlessness using supercritical fluids. Phys Rev E 82:061126CrossRef
101.
Zurück zum Zitat Bartscher C, Straub J (2002) Dynamic behavior of a pure fluid at and near its critical density under microgravity and 1g. Int J Thermophys 23:77–87CrossRef Bartscher C, Straub J (2002) Dynamic behavior of a pure fluid at and near its critical density under microgravity and 1g. Int J Thermophys 23:77–87CrossRef
Metadaten
Titel
Challenges in Near-Critical Microchannel Flows
verfasst von
Lin Chen
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2784-0_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.