Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2022

01.01.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Changes in the Phase Composition of High-Manganese Steels during Tensile Deformation

verfasst von: M. A. Gervasyev, S. Kh. Estemirova, A. N. Mushnikov, V. A. Sharapova, A. A. Gusev, M. A. Bashirova

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High manganese steels with different contents of carbon and additionally alloyed with silicon are investigated. Mechanical properties of the steels under tensile deformation are determined, and the changes in their phase compositions are studied. The phase compositions of steels after quenching and after quenching with subsequent deformation are investigated by the X-ray diffraction method. Magnetometric measurements are performed directly during tensile deformation. It is shown that deformation has a different effect on the phase composition of steels, namely: in steel 40G20, a small amount of strain martensite is formed as a result of deformation; in steel 25G20S3, a substantial part of austenite undergoes a martensitic transformation (γ → ε).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. A. Hadfield, “Hadfield’s manganese steel,” Science 12, No. 306, 284–286 (1888). R. A. Hadfield, “Hadfield’s manganese steel,” Science 12, No. 306, 284–286 (1888).
2.
Zurück zum Zitat M. A. Filippov, A. A. Filipenkov, and G. M. Plotnikov, Wear-Resistant Steels for Castings (USTU-UPI, Yekaterinburg, 2009) [in Russian]. M. A. Filippov, A. A. Filipenkov, and G. M. Plotnikov, Wear-Resistant Steels for Castings (USTU-UPI, Yekaterinburg, 2009) [in Russian].
3.
Zurück zum Zitat L. G. Korshunov, “Structural transformations during friction and wear resistance of austenitic steels,” Fiz. Met. Metalloved., No. 8, 3–21 (1992). L. G. Korshunov, “Structural transformations during friction and wear resistance of austenitic steels,” Fiz. Met. Metalloved., No. 8, 3–21 (1992).
4.
Zurück zum Zitat I. N. Bogachev and V. F. Egolaev, Structure and Properties of Ferromanganese Alloys (Metallurgiya, Moscow, 1973) [in Russian]. I. N. Bogachev and V. F. Egolaev, Structure and Properties of Ferromanganese Alloys (Metallurgiya, Moscow, 1973) [in Russian].
5.
Zurück zum Zitat V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrO RAN, Yekaterinburg, 2013) [in Russian]. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrO RAN, Yekaterinburg, 2013) [in Russian].
6.
Zurück zum Zitat O. Bouaziz, H. Zurob, B. Chehab, J. D. Embury, S. Allain, and M. Huang, “Effect of chemical composition on work hardening of Fe–Mn–C TWIP-steels,” Mater. Sci. Technol. 27, No. 3, 707–709 (2011).CrossRef O. Bouaziz, H. Zurob, B. Chehab, J. D. Embury, S. Allain, and M. Huang, “Effect of chemical composition on work hardening of Fe–Mn–C TWIP-steels,” Mater. Sci. Technol. 27, No. 3, 707–709 (2011).CrossRef
7.
Zurück zum Zitat X. Liang, J. R. McDermid, O. Bouaziz, X. Wang, J. D. Embury, and H. S. Zurob, “Microstructural evolution and strain hardening of Fe–24Mn and Fe–30Mn alloys during tensile deformation,” Acta Mater. 57, No. 13, 3978–3988 (2009).CrossRef X. Liang, J. R. McDermid, O. Bouaziz, X. Wang, J. D. Embury, and H. S. Zurob, “Microstructural evolution and strain hardening of Fe–24Mn and Fe–30Mn alloys during tensile deformation,” Acta Mater. 57, No. 13, 3978–3988 (2009).CrossRef
8.
Zurück zum Zitat M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar and R. Basu, “Texture and microstructure development of tensile deformed high-Mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, No. 1, 32–40 (2019).CrossRef M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar and R. Basu, “Texture and microstructure development of tensile deformed high-Mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, No. 1, 32–40 (2019).CrossRef
9.
Zurück zum Zitat I. Yu. Pyshmintsev, Strengthening of Sheet Steel for Cold Forming (USTU-UPI, Yekaterinburg, 2004) [in Russian]. I. Yu. Pyshmintsev, Strengthening of Sheet Steel for Cold Forming (USTU-UPI, Yekaterinburg, 2004) [in Russian].
10.
Zurück zum Zitat M. Koyamata, T. Sawaguchi, T. Lee, Ch. S. Lee, and K. Tsuzaki, “Work hardening assotiated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels,” Mater. Sci. Eng., A 528, No. 24, 7310–7316 (2011).CrossRef M. Koyamata, T. Sawaguchi, T. Lee, Ch. S. Lee, and K. Tsuzaki, “Work hardening assotiated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels,” Mater. Sci. Eng., A 528, No. 24, 7310–7316 (2011).CrossRef
11.
Zurück zum Zitat B. C. De Cooman, Yu. Estrin, and S. K. Kim, “Twinning induced plasticity (TWIP) steels,” Acta Mater. 142, 283–362 (2018).CrossRef B. C. De Cooman, Yu. Estrin, and S. K. Kim, “Twinning induced plasticity (TWIP) steels,” Acta Mater. 142, 283–362 (2018).CrossRef
12.
Zurück zum Zitat D. T. Pierce, J. A. Jimenez, J. Bentley, D. Raabe, and J. E. Witting, “The influence of stacking fault energy of the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation,” Acta Mater. 100, 178–190 (2015).CrossRef D. T. Pierce, J. A. Jimenez, J. Bentley, D. Raabe, and J. E. Witting, “The influence of stacking fault energy of the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation,” Acta Mater. 100, 178–190 (2015).CrossRef
13.
Zurück zum Zitat S. Curtze and V. -T. Kuokkala, “Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate,” Acta Mater. 58, No. 15, 5129–5141 (2010).CrossRef S. Curtze and V. -T. Kuokkala, “Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate,” Acta Mater. 58, No. 15, 5129–5141 (2010).CrossRef
14.
Zurück zum Zitat J. Talonen, P. Aspegren, and H. Hanninen, “Comparison of different methods for measuring strain induced martensite content in austenitic steels,” Mater. Sci. Technol. 20, 1506–1512 (2004).CrossRef J. Talonen, P. Aspegren, and H. Hanninen, “Comparison of different methods for measuring strain induced martensite content in austenitic steels,” Mater. Sci. Technol. 20, 1506–1512 (2004).CrossRef
15.
Zurück zum Zitat J. K. Kim and B. C. De Cooman, “Stacking fault energy and deformation mechanisms in Fe–xMn–0.6C–yAl TWIP steel,” Mater. Sci. Eng., A 676, 216–231 (2016).CrossRef J. K. Kim and B. C. De Cooman, “Stacking fault energy and deformation mechanisms in Fe–xMn–0.6C–yAl TWIP steel,” Mater. Sci. Eng., A 676, 216–231 (2016).CrossRef
16.
Zurück zum Zitat D. T. Pierce, J. Bentley, J. A. Jimenez, and J. E. Witting, “Stacking fault energy of measurements of Fe–Mn–Al–Si austenitic twinning induced plasticity steels,” Scr. Mater. 66, 753–756 (2012).CrossRef D. T. Pierce, J. Bentley, J. A. Jimenez, and J. E. Witting, “Stacking fault energy of measurements of Fe–Mn–Al–Si austenitic twinning induced plasticity steels,” Scr. Mater. 66, 753–756 (2012).CrossRef
17.
Zurück zum Zitat M. A. Gervas’ev, V. A. Khotinov, N. N. Ozerets, M. S. Khadyev, M. A. Bashirova, and A. A. Gusev, “Changes in microstructure and strain hardening of high-manganese steels under tension,” Met. Sci. Heat Treat. 62, 183–187 (2020).CrossRef M. A. Gervas’ev, V. A. Khotinov, N. N. Ozerets, M. S. Khadyev, M. A. Bashirova, and A. A. Gusev, “Changes in microstructure and strain hardening of high-manganese steels under tension,” Met. Sci. Heat Treat. 62, 183–187 (2020).CrossRef
18.
Zurück zum Zitat M. N. Mikheev and E. S. Gorkunov, Magnetic Methods of Structural Analysis and Non-Destructive Testing (Nauka, Moscow, 1993) [in Russian]. M. N. Mikheev and E. S. Gorkunov, Magnetic Methods of Structural Analysis and Non-Destructive Testing (Nauka, Moscow, 1993) [in Russian].
19.
Zurück zum Zitat M. S. Ogneva, M. B. Rigmant, N. V. Kazantseva, D. I. Davydov, and M. K. Korkh, “Effect of deformation martensite on the electrical and magnetic properties of plastically deformed chromium–nickel steel,” Russ. J. Nondestr. Test. 53, No. 9, 644–651 (2017).CrossRef M. S. Ogneva, M. B. Rigmant, N. V. Kazantseva, D. I. Davydov, and M. K. Korkh, “Effect of deformation martensite on the electrical and magnetic properties of plastically deformed chromium–nickel steel,” Russ. J. Nondestr. Test. 53, No. 9, 644–651 (2017).CrossRef
20.
Zurück zum Zitat M. K. Korkh, M. B. Rigmant, E. Yu. Sazhina, and A. V. Kochnev, “Measuring ferromagnetic phase content based on magnetic properties in two-phase chromium–nickel steels,” Russ. J. Nondestr. Test. 55, No. 11, 837–850 (2019).CrossRef M. K. Korkh, M. B. Rigmant, E. Yu. Sazhina, and A. V. Kochnev, “Measuring ferromagnetic phase content based on magnetic properties in two-phase chromium–nickel steels,” Russ. J. Nondestr. Test. 55, No. 11, 837–850 (2019).CrossRef
21.
Zurück zum Zitat Merinov P., Entin S., Beketov B., Runov A., “The magnetic testing of the ferrite content of austenitic stainless steel weld metal,” NDT Int. 11, 9–14 (1978).CrossRef Merinov P., Entin S., Beketov B., Runov A., “The magnetic testing of the ferrite content of austenitic stainless steel weld metal,” NDT Int. 11, 9–14 (1978).CrossRef
22.
Zurück zum Zitat P. E. Merinov and A. G. Mazepa, “Determination of deformation martensite in austenitic steels by the magnetic method,” Zavod. Lab., No. 3, 47–49 (1997). P. E. Merinov and A. G. Mazepa, “Determination of deformation martensite in austenitic steels by the magnetic method,” Zavod. Lab., No. 3, 47–49 (1997).
23.
Zurück zum Zitat E. S. Gorkunov, S. V. Gladkovskii, S. M. Zadvorkin, S. Yu. Mitropol’skaya, and D. I. Vichuzhanin, “Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation,” Phys. Met. Metallogr. 105, No. 4, 343–350 (2008).CrossRef E. S. Gorkunov, S. V. Gladkovskii, S. M. Zadvorkin, S. Yu. Mitropol’skaya, and D. I. Vichuzhanin, “Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation,” Phys. Met. Metallogr. 105, No. 4, 343–350 (2008).CrossRef
Metadaten
Titel
Changes in the Phase Composition of High-Manganese Steels during Tensile Deformation
verfasst von
M. A. Gervasyev
S. Kh. Estemirova
A. N. Mushnikov
V. A. Sharapova
A. A. Gusev
M. A. Bashirova
Publikationsdatum
01.01.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010057

Weitere Artikel der Ausgabe 1/2022

Physics of Metals and Metallography 1/2022 Zur Ausgabe