2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
In nature complex biological phenomena such as the collective behavior of birds, foraging activity of bees, or cooperative behavior of ants may result from relatively simple rules which however present nonlinear behavior being sensitive to initial conditions. Such systems are generally known as “deterministic nonlinear systems” and the corresponding theory as “chaos theory.” Thus real-world systems that may seem to be stochastic or random may present a nonlinear deterministic and chaotic behavior. Although chaos and random signals share the property of long-term unpredictable irregular behavior and many of random generators in programming softwares as well as the chaotic maps are deterministic; however chaos can help order to arise from disorder. Similarly, many metaheuristic optimization algorithms are inspired from biological systems where order arises from disorder. In these cases disorder often indicates both non-organized patterns and irregular behavior, whereas order is the result of self-organization and evolution and often arises from a disorder condition or from the presence of dissymmetries. Self-organization and evolution are two key factors of many metaheuristic optimization techniques. Due to these common properties between chaos and optimization algorithms, simultaneous use of these concepts can improve the performance of the optimization algorithms [1]. Seemingly the benefits of such combination are generic for other stochastic optimization, and experimental studies confirmed this although this has not mathematically been proven yet [2].
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded metaheuristic algorithms. Int J Optim Civil Eng 3:617–633 Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded metaheuristic algorithms. Int J Optim Civil Eng 3:617–633
2.
Zurück zum Zitat Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and fractal nature. J Comput Appl Math 206:1070–1081 MathSciNetCrossRefMATH Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and fractal nature. J Comput Appl Math 206:1070–1081
MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2(3):4–19 CrossRef Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2(3):4–19
CrossRef
4.
Zurück zum Zitat Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271 CrossRefMATH Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271
CrossRefMATH
5.
Zurück zum Zitat Liu S, Hou Z (2002) Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem. In: Proceedings of the the 4th World Congress on intelligent control and automation, pp 1779–1783 Liu S, Hou Z (2002) Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem. In: Proceedings of the the 4th World Congress on intelligent control and automation, pp 1779–1783
6.
Zurück zum Zitat Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992 MathSciNetCrossRefMATH Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992
MathSciNetCrossRefMATH
7.
Zurück zum Zitat Tatsumi K, Obita Y, Tanino T (2009) Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization. Chaos Solitons Fractals 42:1705–1723 MathSciNetCrossRefMATH Tatsumi K, Obita Y, Tanino T (2009) Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization. Chaos Solitons Fractals 42:1705–1723
MathSciNetCrossRefMATH
8.
Zurück zum Zitat Hilborn RC (2000) Chaos and nonlinear dynamics. Oxford University Press, USA CrossRefMATH Hilborn RC (2000) Chaos and nonlinear dynamics. Oxford University Press, USA
CrossRefMATH
9.
Zurück zum Zitat Heidari-Bateni G, McGillem CD (1994) A chaotic direct-sequence spread spectrum communication system. IEEE Trans Commun 42(2–4):1524–1527 CrossRef Heidari-Bateni G, McGillem CD (1994) A chaotic direct-sequence spread spectrum communication system. IEEE Trans Commun 42(2–4):1524–1527
CrossRef
10.
Zurück zum Zitat May R (1976) Mathematical models with very complicated dynamics. Nature 261:459–467 CrossRef May R (1976) Mathematical models with very complicated dynamics. Nature 261:459–467
CrossRef
11.
Zurück zum Zitat Peitgen H, Jurgens H, Saupe D (1992) Chaos and fractals. Springer, Berlin CrossRefMATH Peitgen H, Jurgens H, Saupe D (1992) Chaos and fractals. Springer, Berlin
CrossRefMATH
12.
Zurück zum Zitat Zheng WM (1994) Kneading plane of the circle map. Chaos Solitons Fractals 4(7):1221–1233 CrossRefMATH Zheng WM (1994) Kneading plane of the circle map. Chaos Solitons Fractals 4(7):1221–1233
CrossRefMATH
13.
Zurück zum Zitat Dressler U, Farmer JD (1992) Generalized Lyapunov exponents corresponding to higher derivatives. Phys D 59:365–377 MathSciNetCrossRefMATH Dressler U, Farmer JD (1992) Generalized Lyapunov exponents corresponding to higher derivatives. Phys D 59:365–377
MathSciNetCrossRefMATH
14.
Zurück zum Zitat Zaslavskii GM (1987) The simplest case of a strange attractor. Phys Lett A69(3):145–147 MathSciNet Zaslavskii GM (1987) The simplest case of a strange attractor. Phys Lett A69(3):145–147
MathSciNet
15.
Zurück zum Zitat Glover F, Kochenberger GA (2003) Handbook of metaheuristic. Kluwer Academic Publishers, Boston, MA CrossRefMATH Glover F, Kochenberger GA (2003) Handbook of metaheuristic. Kluwer Academic Publishers, Boston, MA
CrossRefMATH
16.
Zurück zum Zitat Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New Jersey CrossRefMATH Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New Jersey
CrossRefMATH
17.
Zurück zum Zitat Dorigo M (2009) Metaheuristics network website (2000). http://www.metaheuristics.net/. Visited in January Dorigo M (2009) Metaheuristics network website (2000).
http://www.metaheuristics.net/. Visited in January
18.
Zurück zum Zitat Schuster HG (1988) Deterministic chaos: an introduction, 2nd revised edn. Physick-Verlag GmnH, D-6940, Weinheim Schuster HG (1988) Deterministic chaos: an introduction, 2nd revised edn. Physick-Verlag GmnH, D-6940, Weinheim
19.
Zurück zum Zitat Coelho L, Mariani V (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913 CrossRef Coelho L, Mariani V (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913
CrossRef
20.
Zurück zum Zitat Alatas B (2010) Chaotic harmony search algorithm. Appl Math Comput 29(4):2687–2699 MATH Alatas B (2010) Chaotic harmony search algorithm. Appl Math Comput 29(4):2687–2699
MATH
21.
Zurück zum Zitat Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40:1715–1734 MathSciNetCrossRefMATH Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40:1715–1734
MathSciNetCrossRefMATH
22.
Zurück zum Zitat Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687 CrossRef Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687
CrossRef
23.
Zurück zum Zitat Alatas B (2011) Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci Numer Simul 16(9):3696–3703 CrossRefMATH Alatas B (2011) Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci Numer Simul 16(9):3696–3703
CrossRefMATH
24.
Zurück zum Zitat Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319 MathSciNetCrossRefMATH Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319
MathSciNetCrossRefMATH
25.
Zurück zum Zitat Talataharis S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using chaos for global optimization problems. Int J Optim Civil Eng 1(2):305–325 Talataharis S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using chaos for global optimization problems. Int J Optim Civil Eng 1(2):305–325
26.
Zurück zum Zitat Talatahari S, Kaveh A, Sheikholeslami R (2012) Chaotic imperialist competitive algorithm for optimum design of truss structures. Struct Multidiscip Optim 46:355–367 CrossRef Talatahari S, Kaveh A, Sheikholeslami R (2012) Chaotic imperialist competitive algorithm for optimum design of truss structures. Struct Multidiscip Optim 46:355–367
CrossRef
27.
Zurück zum Zitat Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285 CrossRefMATH Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285
CrossRefMATH
28.
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315 CrossRef Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315
CrossRef
29.
Zurück zum Zitat Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34:1366–1375 CrossRef Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34:1366–1375
CrossRef
30.
Zurück zum Zitat Wu TB, Cheng Y, Zhou TY, Yue Z (2009) Optimization control of PID based on chaos genetic algorithm. Comput Simul 26:202–204 Wu TB, Cheng Y, Zhou TY, Yue Z (2009) Optimization control of PID based on chaos genetic algorithm. Comput Simul 26:202–204
31.
Zurück zum Zitat Guo ZL, Wang SA (2005) The comparative study of performance of three types of chaos immune optimization combination algorithms. J Syst Simul 17:307–309 Guo ZL, Wang SA (2005) The comparative study of performance of three types of chaos immune optimization combination algorithms. J Syst Simul 17:307–309
32.
Zurück zum Zitat Ji MJ, Tang HW (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals 21:933–941 CrossRefMATH Ji MJ, Tang HW (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals 21:933–941
CrossRefMATH
33.
Zurück zum Zitat Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning. Robot Comput Integr Manuf 26:212–222 CrossRef Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning. Robot Comput Integr Manuf 26:212–222
CrossRef
34.
Zurück zum Zitat Gao L, Liu X (2009) A resilient particle swarm optimization algorithm based on chaos and applying it to optimize the fermentation process. Int J Inf Syst Sci 5:380–391 Gao L, Liu X (2009) A resilient particle swarm optimization algorithm based on chaos and applying it to optimize the fermentation process. Int J Inf Syst Sci 5:380–391
35.
Zurück zum Zitat He Y, Zhou J, Li C, Yang J, Li Q (2008) A precise chaotic particle swarm optimization algorithm based on improved tent map. In: Proceedings of the 4th International Conference on natural computation, pp 569–573 He Y, Zhou J, Li C, Yang J, Li Q (2008) A precise chaotic particle swarm optimization algorithm based on improved tent map. In: Proceedings of the 4th International Conference on natural computation, pp 569–573
36.
Zurück zum Zitat Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067 CrossRef Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067
CrossRef
37.
Zurück zum Zitat Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147 CrossRef Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147
CrossRef
38.
Zurück zum Zitat Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953 CrossRef Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953
CrossRef
39.
Zurück zum Zitat Togan V, Daloglu AT (2008) An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput Struct 86:1204–1218 CrossRef Togan V, Daloglu AT (2008) An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput Struct 86:1204–1218
CrossRef
40.
Zurück zum Zitat Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92–93:229–241 CrossRef Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92–93:229–241
CrossRef
41.
Zurück zum Zitat Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87:1129–1140 CrossRef Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87:1129–1140
CrossRef
- Titel
- Chaos Embedded Metaheuristic Algorithms
- DOI
- https://doi.org/10.1007/978-3-319-46173-1_12
- Autor:
-
A. Kaveh
- Sequenznummer
- 12
- Kapitelnummer
- Chapter 12