Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 192))

Abstract

Nanodiamond (ND) reactivity and the ease of graphitization limits the temperature range where it may be effectively used. At the same time new nanocarbons (NC) can be produced using controlled ND graphitization (namely: onion-like carbon (OLC), sp2/sp3 nanocomposites, and nanographite). Here we briefly review data on the graphitization of diamond with emphasis on the low temperature graphitization at 1370–1870K and the properties of OLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Davies and T. Evans. Graphitization of diamond at zero pressure and a high pressure. Proc. R. Soc. Lond. A. 328, 413–27 (1972).

    Google Scholar 

  2. T. Evans. Changes produced by high temperature treatment of diamond. In: The properties of diamond. Ed. J.E. Field. London, New York, San Francisco: Academic Press, pp. 403–24 (1979).

    Google Scholar 

  3. V.M. Titov, I.Yu. Malkov, V.L. Kuznetsov, and A.L. Chuvilin. Method of production of onion-like carbon particles. Russian Patent 209370 (October 19, 1993).

    Google Scholar 

  4. V.L. Kuznetsov, A.L. Chuvilin, Yu.V. Butenko, and V.M. Titov. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 222, 343 (1994).

    Article  Google Scholar 

  5. V.L. Kuznetsov, I.Yu. Malkov, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, Sh.K. Shaichutdinov, and Yu.V. Butenko. Effect of explosions on the structure of detonation soots: ultradisperse diamond and onion carbon. Carbon 32, 873 (1994).

    Article  Google Scholar 

  6. V.L. Kuznetsov, A.L. Chuvilin, Yu.V. Butenko, A.K. Gutakovskii, S.V. Stankus, and R.A. Khairulin. Closed Curved Graphite-Like Structures Formation on Micron-Size Diamond, Chem. Phys. Lett. 289, 353 (1998).

    Article  Google Scholar 

  7. V.L. Kuznetsov, I.L. Zilberberg, Yu.V. Butenko, A.L. Chuvilin, and B. Segall. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J Appl. Phys. 86, 863 (1999).

    Article  Google Scholar 

  8. V.L. Kuznetsov, A.L. Chuvilin, Yu.V. Butenko, I.Yu. Malkov, A.K. Gutakovskii, S.V. Stankus, and, R.A. Khairulin. In: Science and Technology of Fullerene Materials. Ed. P. Bernuer, D.S. Bethune, L.Y. Chiang, T.W. Ebbessen, R.M. Metzger, and J.W. Minmire. Mater. Res. Soc. Proc. 359. Pittsburgh Materials: Research Society, p. 105, 1995.

    Google Scholar 

  9. J.-Y. Raty and G. Galli. Structural and electronic properties of isolated nanodiamonds: a theoretical perspective, this Proceedings, p. 15–24.

    Google Scholar 

  10. A.S. Barnard. From nanodiamond to nanowires, this Proceedings, p. 25–38.

    Google Scholar 

  11. V.Yu. Dolmatov. Ultradispersed diamond from detonation synthesis: properties and applications. Uspekhi Khimii 70(7), 687 (2001) (in Russian).

    Google Scholar 

  12. V.Yu. Dolmatov Ultradispersed diamond from detonation synthesis. St. Petersburg: State Polytechnic University, St. Petersburg (2003) (in Russian).

    Google Scholar 

  13. A.L. Vereschagin Detonation Nanodiamonds. Bamaul, Russian Federation: Altai State Technical University (2001).

    Google Scholar 

  14. E. Mironov, A. Koretz, and E. Petrov. Detonation synthesis ultradispersed diamond structural properties investigation by infrared absorption. Diam. Relat. Mater. 11, 872–76(2002).

    Article  Google Scholar 

  15. V.L. Kuznetsov, M.N. Aleksandrov, I.V. Zagoruiko, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, and. V.A. Sakovitch. Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29, 665 (1991).

    Google Scholar 

  16. Y.W. Zhu, X.Q. Shen, B.C. Wang, X.Y. Xu, and Z.J. Feng. Chemical mechanical modification of nanodiamond in an aqueous system. Phys. Solid. State 46(4), 681 (2004).

    Google Scholar 

  17. V.L. Kuznetsov, M.N. Aleksandrov, I.V. Zagoruiko, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, and. V.A. Sakovitch. Study of ultradispersed diamond powders obtained using explosion energy, Carbon 29, 665 (1991).

    Google Scholar 

  18. V.L. Kuznetsov and Yu.V. Butenko. Synthesis and properties of nanostructured carbon materials: nanodiamond, onion-like carbon and carbon nanotubes. In: Nanostructured materials and coating for biomedical and sensor applications. Ed. Y.G. Gogotsi and I.V. Uvarova, NATO Science Series, Kluwer Academic Publishers, p. 187 (2003).

    Google Scholar 

  19. V.S. Bondar and A.P. Puzyr. Nanodiamonds for Biological Investigations. Physics of the Solid State 46(4), 716–19 (2004).

    Google Scholar 

  20. A. Härtl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steimüller, and M. Stutzmann. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nature Materials 3, 736 (2004).

    PubMed  Google Scholar 

  21. Yu.V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S.V. Stankus, R.A. Khairulin, and B. Segall. The kinetics of the graphitization of dispersed diamonds at ‘low’ temperatures. J App. Phys. 88, 4380 (2000).

    Google Scholar 

  22. Yu.V. Butenko, S. Krishnamurthy, A.K. Chakraborty, V.L. Kuznetsov, V.R. Dhanak, M.R.C. Hunt, and L. Šiller Photoemission study of onion-like carbons produced by annealing nanodiamonds, accepted for publication in Phys. Rev. B.

    Google Scholar 

  23. V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, A.I. Romanenko, and A.V. Okotrub. Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem. Phys. Lett. 336, 397 (2001).

    Google Scholar 

  24. E.D. Obraztsova, S.M. Pimenov, V.I. Konov, M., Fujii S. Hayashi, V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, and E.N. Loubnin. Raman investigation of onion-like carbon. Molecular Materials 10(1–4), 249 (1998).

    Google Scholar 

  25. E.D. Obraztsova, M. Fujii, S. Hayashi, V.L. Kuznetsov, Yu.V. Butenko, and A.L. Chuvilin. Raman identification of onion-like carbon. Carbon 36, 821 (1998).

    Google Scholar 

  26. T. Enoki. Diamond-to-graphite conversion in nanodiamond and the electronic properties of nanodiamond-derived carbon system. Phys. Solid. State 46(4), 651 (2004).

    Google Scholar 

  27. A.M. Affoune, B.L.V. Prasad, H. Sato, T. Enoki, Y. Kaburagi, and Y. Hishiyama. Experimental evidence of a single nano-graphene. Chem. Phys. Lett. 348, 17 (2001).

    Google Scholar 

  28. O.E. Andersson, B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, Yoshikawa, M. and S. Bandow. Structure and electronic properties of graphite nanoparticles. Phys. Rev. B 58, 16387 (1998).

    Google Scholar 

  29. B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A.M. Rao, K. Oshida, and M. Endo. Heat-treatment effect on the nanosized graphite pi-electron system during diamond to graphite conversion. Phys. Rev. B 62, 11209 (2000).

    Google Scholar 

  30. V.L. Kuznetsov, Yu.V. Butenko, V.I. Zaikovskii, and A.L. Chuvilin. Carbon redistribution processes in nanocarbons. Carbon 42, 1057 (2004).

    Google Scholar 

  31. S. Tomita, M. Fujii, S. Hayashi, and K. Yamamoto. Electron energy-loss spectroscopy of carbon onions. Chem. Phys. Lett. 305, 225 (1999).

    Google Scholar 

  32. S. Tomita, T. Sakurai, H. Ohta, M. Fujii, and S. Hayashi. Structure and electronic properties of carbon onions. J. Chem. Phys. 114, 7477 (2001).

    Google Scholar 

  33. S. Tomita, A. Burian, J.C. Dore, D. LeBolloch, M. Fujii, and S. Hayashi. Diamond nanoparticles to carbon onion transformation: X-ray diffraction study. Carbon 40, 1469 (2002).

    Google Scholar 

  34. S. Tomita, S. Hayashi, Y. Tsukuda, and M. Fujii. Ultraviolet-visible absorption spectroscopy of carbon onions. Phys. Solid State 44, 450 (2002).

    Google Scholar 

  35. J.B. Donnet, Le Moigne, T.K. Wang, M. Samirant, and A. Eckhardt. Onion-like and equilibrium structure of carbon. CR ACAD SCI II C 1(7), 431 (1998).

    Google Scholar 

  36. M.V. Baidakova, Yu.V. Butenko, V.L. Kuznetsov, A.Ya. Vul’, M.A. Yagovkina. X-ray Diffraction Study of Low Temperature Graphitization of Diamond, International Symposium, Detonation Nanodiamonds: Technology, Properties and Applications, St Petersburg, Russia July 7–9 2003, p 77 (2003).

    Google Scholar 

  37. A.V. Okotrub, L.G. Bulusheva, V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, and M.I. Heggie. X-ray emission studies of valence band of nanodiamonds annealed at different temperatures. J. Chem. Phys. A 105, 9781 (2001).

    Google Scholar 

  38. A.I. Romanenko, O.B. Anikeeva, A.V. Okotrub, L.G. Bulusheva, V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, C. Dong, and Y. Ni. The temperature dependence of the electrical resistivity and the negative magnetoresistance of carbon nanoparticles. Phys. Solid. State 44(3), 487 (2002).

    Google Scholar 

  39. E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi. Onion-like carbon and diamond nanoparticles for optical limiting. Chem. Phys. Lett. 357, 336 (2002).

    Google Scholar 

  40. Ph. Lambin, L. Henrard, A.A. Lucas, and Th. Cabioc’h. Optical properties of the carbon onions, in G. Benedek, P. Milani, and V.G. Ralchenko (eds.), Nanostructured Carbon for Advanced Applications. Dordrecht: Kluwer Academic Publishers, pp. 273–84 (2001).

    Google Scholar 

  41. N. Keller, N.I. Maksimova, V.V. Roddatis, M. Schur, G. Mestl, V.L. Kuznetsov, Yu.V. Butenko, and R. Schlögl. The catalytic use of onion-like carbon materials for Styrene Synthesis by oxidative dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. 41(11), 1885 (2002).

    Google Scholar 

  42. V.V. Roddatis, V.L. Kuznetsov, Yu.V. Butenko, D.S. Su, and R. Schlögl. Transformation of diamond nanoparticles into carbon onions under electron irradiation. Phys. Chem., Chem. Phys. 4, 1964 (2002).

    Google Scholar 

  43. D. Ugarte. Curling and closure of graphitic networks under electron beam irradiation. Nature 359, 707 (1992).

    PubMed  Google Scholar 

  44. F. Banhart. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999).

    Google Scholar 

  45. M. Zaiser, Y. Lyutovich, and F. Banhart. Irradiation-induced transformation of graphite to diamond: A quantitative study. Phys. Rev. B 62(5), 3058 (2000).

    Google Scholar 

  46. F. Banhart, T. Fuller, Ph. Redlich, and P.M. Ajayan. The formation, annealing and self-compression of carbon onions under electron irradiation. Chem. Phys. Lett. 269, 349 (1997).

    Google Scholar 

  47. W.A. De Heer and D. Ugarte. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar adsorption feature. Chem. Phys. Lett. 207, 480 (1993).

    Google Scholar 

  48. M. Terrones and H. Terrones. The role of defects in graphitic structures. Full. Sci. and Tech. 4, 517 (1996).

    Google Scholar 

  49. L.G. Bulusheva, A.V. Okotrub, V.L. Kuznetsov, A.L. Chuvilin, Yu.V. Butenko, and M.I. Heggie. Topology and electronic structure of onion-like carbon and graphite/diamond nanocomposites. In: S. Komameni, J.-I. Matsushita, G.Q. Lu, J.C. Parker, R.A. Vaia (eds.), Nanophase and Nanocomposite Materials 703, Mat. Res. Sym. Proc., Material Research Society, Pittsburgh, pp. 381–86 (2002).

    Google Scholar 

  50. A.I. Romanenko, O.B. Anikeeva, A.V. Okotrub, V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, C. Dong, and Y. Ni. Temperature dependence of electroresistivity, negative and positive magnetoresistivity of carbon nanoparticles. In: S. Komarneni, J.-I. Matsushita, G.Q. Lu, J.C. Parker, R.A. Vaia (eds.), Nanophase and Nanocomposite Materials 703, Mat. Res. Sym. Proc., Material Research Society, Pittsburgh, pp. 259–64 (2002).

    Google Scholar 

  51. J.-Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, and L.J. Terminello. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 037401 (2003).

    PubMed  Google Scholar 

  52. F. Fugaciu, H. Hermann, and G. Seifert. Concentric-shell fullerenes and diamond particles: A molecular-dynamics study. Phys. Rev. B 60, 10711 (1999).

    Google Scholar 

  53. B.B. Pate. The diamond surface — atomic and electronic-structure. Surf Sci. 165, 83 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Kuznetsov, V., Butenko, Y. (2005). Nanodiamond Graphitization and Properties of Onion-Like Carbon. In: Gruen, D.M., Shenderova, O.A., Vul’, A.Y. (eds) Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series, vol 192. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3322-2_15

Download citation

Publish with us

Policies and ethics