Skip to main content

Influence of the Bone Microenvironment on Breast Cancer Metastasis to Bone

  • Chapter
Integration/Interaction of Oncologic Growth

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

Cancer patients do not generally die as a direct consequence of the primary tumour, but due to the formation of secondary tumours — metastases — that arise during tumour progression. Bone metastases are a common complication in patients with advanced breast and prostate cancer. Once established, bone metastases cause intractable pain, hypocalcaemia, spinal cord compression and bone frailty. The mechanisms regulating sitespecific metastasis are not well understood despite being the focus of research for over a century. However, it is becoming clear that the microenvironment at the secondary tumour site contributes to metastatic progression by regulating the properties of metastatic cells. The stromal microenvironment provides an opportunistic niche in which circulating tumour cells can evade the immune system and be refractory to conventional therapies. A better understanding of tumour-stroma interactions may identify critical factors regulating metastatic progression and lead to the development of stromal therapies for breast and other malignancies. Here, the evidence implicating stromal factors in the metastasis of breast tumours to bone will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fidler, I. J. 2002, The organ microenvironment and cancer metastasis. Differentiation, 70:498–505.

    Article  PubMed  Google Scholar 

  2. Boudreau, N., and Myers, C., 2003, Breast can-cerinduced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res, 5:140–146.

    Article  PubMed  Google Scholar 

  3. Brown, L. F., Guidi, A. J., Schnitt, S. J., Van De Water, L., Iruela-Arispe, M. L., Yeo, T. K., Tognazzi, K., and Dvorak, H. F., 1999, Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res, 5:1041–1056.

    PubMed  Google Scholar 

  4. Chang, C. and Werb, Z., 2001, The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol, 11:S37–43.

    PubMed  Google Scholar 

  5. Liotta, L. A., and Kohn, E. C., 2001, The microenvironment of the tumour-host interface. Nature, 411:375–379.

    Article  PubMed  Google Scholar 

  6. Sternlicht, M. D., Bissell, M. J., and Werb, Z., 2000, The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumour promoter. Oncogene, 19:1102–1113.

    PubMed  Google Scholar 

  7. Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A., and Griffith, L. G., 2000, Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci, 113 (Pt 10): 1677–1686.

    PubMed  Google Scholar 

  8. Sung, V., Stubbs, J. T., 3rd, Fisher, L., Aaron, A. D., and Thompson, E. W., 1998, Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha(v)beta3 and alpha(v)beta5 integrins. J Cell Physiol, 176:482–494.

    Article  PubMed  Google Scholar 

  9. Engers, R., and Gabbert, H. E., 2000, Mechanisms of tumour metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol, 126:682–692.

    PubMed  Google Scholar 

  10. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., 1991, Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64:327–336.

    Article  PubMed  Google Scholar 

  11. Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H., and Rinker-Schaeffer, C. W., 2003, Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol, 169:1122–1133.

    Article  PubMed  Google Scholar 

  12. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., and Groom, A. C., 1998, Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol, 153: 865–873.

    PubMed  Google Scholar 

  13. Weber, M. H., Goltzman, D., Kostenuik, P., Rabbani, S., Singh, G., Duivenvoorden, W. C., and Orr, F. W., 2000, Mechanisms of tumour metastasis to bone. Crit Rev Eukaryot Gene Expr, 10:281–302.

    PubMed  Google Scholar 

  14. Paget, S., 1889, The distribution of secondary growths in cancer of the breast. 1889. Lancet, 1:571–573.

    Article  Google Scholar 

  15. Coleman, R. E. and Rubens, R. D., 1987, The clinical course of bone metastases from breast cancer. Br J Cancer, 55:61–66.

    PubMed  Google Scholar 

  16. Reddi, A. H., Roodman, D., Freeman, C., and Mohla, S., 2003, Mechanisms of tumour metastasis to the bone: challenges and opportunities. J Bone Miner Res, 18:190–194.

    PubMed  Google Scholar 

  17. van der Pluijm, G., Lowik, C., and Papapoulos, S., 2000, Tumour progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem. Cancer Treat Rev, 26:11–27.

    Article  Google Scholar 

  18. Aubin, J. E., 1998, Advances in the osteoblast lineage. Biochem Cell Biol, 76:899–910.

    Article  PubMed  Google Scholar 

  19. Mackie, E. J., 2003, Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol, 35:1301–1305.

    Article  PubMed  Google Scholar 

  20. Jin, H., and Varner, J., 2004, Integrins: roles in cancer development and as treatment targets. Br J Cancer, 90:561–565.

    Article  Google Scholar 

  21. Linkhart, T. A., Mohan, S., and Baylink, D. J., 1996, Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone, 19:1S–12S.

    Article  Google Scholar 

  22. Solheim, E., 1998, Growth factors in bone. Int Orthop, 22:410–416.

    Article  PubMed  Google Scholar 

  23. Mundy, G. R., Chen, D., Zhao, M., Dallas, S., Xu, C., and Harris, S., 2001, Growth regulatory factors and bone. Rev Endocr Metab Disord, 2:105–115.

    Article  PubMed  Google Scholar 

  24. Nakamura, I., Pilkington, M. F., Lakkakorpi, P. T., Lipfert, L., Sims, S. M., Dixon, S. J., Rodan, G. A., and Duong, L. T., 1999, Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci, 112 (Pt 22):3985–3993.

    PubMed  Google Scholar 

  25. McHugh, K. P., Hodivala-Dilke, K., Zheng, M. H., Namba, N., Lam, J., Novack, D., Feng, X., Ross, F. P., Hynes, R. O., and Teitelbaum, S. L., 2000, Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest, 105:433–440.

    PubMed  Google Scholar 

  26. Drake, F. H., Dodds, R. A., James, I. E., Connor, J. R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., and Gowen, M., 1996, Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem, 271:12511–12516.

    Article  PubMed  Google Scholar 

  27. Atley, L. M., Mort, J. S., Lalumiere, M., and Eyre, D. R., 2000, Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating by cross-linked N-telopeptide neoepitope. Bone, 26:241–247.

    Article  PubMed  Google Scholar 

  28. Delaisse, J. M., Andersen, T. L., Engsig, M. T., Henriksen, K., Troen, T., and Blavier, L., 2003, Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech, 61:504–513.

    Article  PubMed  Google Scholar 

  29. Dew, G., Murphy, G., Stanton, H., Vallon, R., Angel, P., Reynolds, J. J., and Hembry, R. M., 2000, Localisation of matrix metalloproteinases and TIMP-2 in resorbing mouse bone. Cell Tissue Res, 299:385–394.

    PubMed  Google Scholar 

  30. Yamagiwa, H., Tokunaga, K., Hayami, T., Hatano, H., Uchida, M., Endo, N., and Takahashi, H., 1999, E. Expression of metalloproteinase-13 (Collagenase-3) is induced during fracture healing in mice. Bone, 25:197–203.

    Article  PubMed  Google Scholar 

  31. Boyle, W. J., Simonet, W. S., and Lacey, D. L., 2003, Osteoclast differentiation and activation. Nature, 423:337–342.

    Article  PubMed  Google Scholar 

  32. Troen, B. R., 2003, Molecular mechanisms underlying osteoclast formation and activation. Exp Gerontol, 38:605–614.

    Article  PubMed  Google Scholar 

  33. Kong, Y. Y., Yoshida, H., Sarosi, I., Tan, H. L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A. J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C. R., Lacey, D. L., Mak, T. W., Boyle, W. J., and Penninger, J. M., 1999, OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397:315–323.

    Article  PubMed  Google Scholar 

  34. Li, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, R., Scully, S., Van, G., Kaufman, S., Juan, S. C., Sun, Y., Tarpley, J., Martin, L., Christensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C. R., Lacey, D. L., and Boyle, W. J., 2000, RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A, 97:1566–1571.

    Article  PubMed  Google Scholar 

  35. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J., and Boyle, W. J., 1998, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93:165–176.

    Article  PubMed  Google Scholar 

  36. Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, L., Hughes, T. M., Hill, D., Pattison, W., Campbell, P., Boyle, W. J., and et al., 1997, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 89:309–319.

    Article  PubMed  Google Scholar 

  37. Bucay, N., Sarosi, I., Dunstan, C. R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, H. L., Xu, W., Lacey, D. L., Boyle, W. J., and Simonet, W. S., 1998, Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 12:1260–1268.

    PubMed  Google Scholar 

  38. Takai, H., Kanematsu, M., Yano, K., Tsuda, E., Higashio, K., Ikeda, K., Watanabe, K., and Yamada, Y., 1998, Transforming growth factor-beta stimulates the production of osteoprotegerin/ osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem, 273:27091–27096.

    Article  PubMed  Google Scholar 

  39. Quinn, J. M., Itoh, K., Udagawa, N., Hausler, K., Yasuda, H., Shima, N., Mizuno, A., Higashio, K., Takahashi, N., Suda, T., Martin, T. J., and Gillespie, M. T., 2001, Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res, 16:1787–1794.

    PubMed  Google Scholar 

  40. Rosol, T. J., Tannehill-Gregg, S. H., LeRoy, B. E., Mandl, S., and Contag, C. H., 2003, Animal models of bone metastasis. Cancer, 97:748–757.

    Article  PubMed  Google Scholar 

  41. Arguello, F., Baggs, R. B., and Frantz, C. N., 1988, A murine model of experimental metastasis to bone and bone marrow. Cancer Res, 48:6876–6881.

    PubMed  Google Scholar 

  42. Sasaki, A., Boyce, B. F., Story, B., Wright, K. R., Chapman, M., Boyce, R., Mundy, G. R., and Yoneda, T., 1995, Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res, 55:3551–3557.

    PubMed  Google Scholar 

  43. Lelekakis, M., Moseley, J. M., Martin, T. J., Hards, D., Williams, E., Ho, P., Lowen, D., Javni, J., Miller, F. R., Slavin, J., and Anderson, R. L., 1999, A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis, 17:163–170.

    Article  PubMed  Google Scholar 

  44. Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., Yoneda, T., and Mundy, G. R., 1996, Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest, 98:1544–1549.

    PubMed  Google Scholar 

  45. Sung, V., Cattell, D. A., Bueno, J. M., Murray, A., Zwiebel, J. A., Aaron, A. D., and Thompson, E. W., 1997, Human breast cancer cell metastasis to long bone and soft organs of nude mice: a quantitative assay. Clin Exp Metastasis, 15:173–183.

    Article  PubMed  Google Scholar 

  46. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., and Massague, J., 2003, A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3:537–549.

    Article  PubMed  Google Scholar 

  47. Parker, B. S., Eckhardt, B. L., and Anderson, R. L., 2004, Models of breast cancer metastasis to bone: characterization of a clinically relevant model. In Bone Metastasis, G. Singh and F. W. Orr (eds.). Kluwer Press, The Netherlands.

    Google Scholar 

  48. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verastegui, E., and Zlotnik, A., 2001, Involvement of chemokine receptors in breast cancer metastasis. Nature, 410:50–56.

    Article  PubMed  Google Scholar 

  49. Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., and McCauley, L. K., 2002, Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 62:1832–1837.

    PubMed  Google Scholar 

  50. Hood, J. D. and Cheresh, D. A., 2002, Role of integrins in cell invasion and migration. Nat Rev Cancer, 2:91–100.

    Article  PubMed  Google Scholar 

  51. Mercurio, A. M., Bachelder, R. E., Chung, J., O'Connor, K. L., Rabinovitz, I., Shaw, L. M., and Tani, T., 2001, Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia, 6:299–309.

    Article  Google Scholar 

  52. Sloan, E. K. and Anderson, R. L., 2002, Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci, 59:1491–1502.

    Article  PubMed  Google Scholar 

  53. Shaw, L. M., 1999, Integrin function in breast carcinoma progression. J Mammary Gland Biol Neoplasia, 4:367–376.

    Article  Google Scholar 

  54. Boudreau, N. J. and Jones, P. L.. 1999, Extracellular matrix and integrin signalling: the shape of things to come. Biochem J, 339 (Pt 3):481–488.

    Article  PubMed  Google Scholar 

  55. Li, X., Regezi, J., Ross, F. P., Blystone, S., Ilic, D., Leong, S. P., and Ramos, D. M., 2001, Integrin alphavbeta3 mediates K1735 murine melanoma cell motility in vivo and in vitro. J Cell Sci, 114:2665–2672.

    PubMed  Google Scholar 

  56. Butler, B., Williams, M. P., and Blystone, S. D., 2003, Ligand-dependent activation of integrin alpha vbeta 3. J Biol Chem, 278:5264–5270.

    Article  PubMed  Google Scholar 

  57. Liapis, H., Flath, A., and Kitazawa, S., 1996, Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol, 5:127–135.

    Article  PubMed  Google Scholar 

  58. Felding-Habermann, B., O'Toole, T. E., Smith, J. W., Fransvea, E., Ruggeri, Z. M., Ginsberg, M. H., Hughes, P. E., Pampori, N., Shattil, S. J., Saven, A., and Mueller, B. M., 2001, Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A, 98:1853–1858.

    Article  Google Scholar 

  59. Felding-Habermann, B., Habermann, R., Saldivar, E., and Ruggeri, Z. M., 1996, Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem, 271:5892–5900.

    Article  PubMed  Google Scholar 

  60. Brooks, P. C., Stromblad, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P., and Cheresh, D. A., 1996, Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell, 85:683–693.

    Article  PubMed  Google Scholar 

  61. Rolli, M., Fransvea, E., Pilch, J., Saven, A., and Felding-Habermann, B., 2003, Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A, 100:9482–9487.

    Article  PubMed  Google Scholar 

  62. Roodman, G. D., 2004, Mechanisms of bone metastasis. N Engl J Med, 350:1655–1664.

    Article  Google Scholar 

  63. DeMartini, A. L., Buzdar, A. U., and Blumenschein, G. R., 1983, Osteoblastic metastatic disease as a therapeutic response to adjuvant chemotherapy in breast cancer. J Surg Oncol, 23:32–34.

    PubMed  Google Scholar 

  64. Yi, B., Williams, P. J., Niewolna, M., Wang, Y., and Yoneda, T., 2002, Tumour-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res, 62:917–923.

    PubMed  Google Scholar 

  65. Mundy, G. R., 1997, Mechanisms of bone metastasis. Cancer, 80:1546–1556.

    Article  PubMed  Google Scholar 

  66. Eilon, G. and Mundy, G. R., 1978, Direct resorption of bone by human breast cancer cells in vitro. Nature, 276:726–728.

    Article  Google Scholar 

  67. Mundy, G. R., 2002, Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2:584–593.

    Article  PubMed  Google Scholar 

  68. Martin, T. J., Allan, E. H., and Fukumoto, S., 1993, The plasminogen activator and inhibitor system in bone remodelling. Growth Regul 3:209–214.

    PubMed  Google Scholar 

  69. Maeda, S., Dean, D. D., Gomez, R., Schwartz, Z., and Boyan, B. D., 2002, The first stage of transforming growth factor beta1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3). Calcif Tissue Int, 70:54–65.

    Article  Google Scholar 

  70. Wrana, J. L., Maeno, M., Hawrylyshyn, B., Yao, K. L., Domenicucci, C., and Sodek, J., 1988, Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. J Cell Biol, 106:915–924.

    Article  PubMed  Google Scholar 

  71. Festuccia, C., Angelucci, A., Gravina, G. L., Villanova, I., Teti, A., Albini, A., Bologna, M., and Abini, A., 2000, Osteoblast-derived TGF-beta1 modulates matrix degrading protease expression and activity in prostate cancer cells. Int J Cancer, 85:407–415.

    Article  PubMed  Google Scholar 

  72. Huang, X., and Lee, C., 2003, From TGF-beta to cancer therapy. Curr Drug Targets, 4:243–250.

    Article  Google Scholar 

  73. Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J., and Massague, J., 2003, Transforming growth factor beta signaling impairs Neu-induced mammary tumourigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A, 100:8430–8435.

    Article  Google Scholar 

  74. Benson, J. R., 2004, Role of transforming growth factor beta in breast carcinogenesis. Lancet Oncol, 5:229–239.

    Article  PubMed  Google Scholar 

  75. Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., Massague, J., Mundy, G. R., and Guise, T. A., 1999, TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest, 103:197–206.

    PubMed  Google Scholar 

  76. Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., Grubbs, B. G., Dallas, M., Cui, Y., and Guise, T. A., 2002, Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem, 277:24571–24578.

    Article  PubMed  Google Scholar 

  77. Morgan, H., Tumber, A., and Hill, P. A., 2004, Breast cancer cells induce osteoclast formation by stimulating host IL-11 production and downregulating granulocyte/macrophage colony-stimulating factor. Int J Cancer, 109:653–660.

    Article  PubMed  Google Scholar 

  78. Suarez-Cuervo, C., Harris, K. W., Kallman, L., Vaananen, H. K., and Selander, K. S., 2003, Tumour necrosis factor-alpha induces interleukin-6 production via extracellular-regulated kinase 1 activation in breast cancer cells. Breast Cancer Res Treat, 80:71–78.

    Article  Google Scholar 

  79. Morinaga, Y., Fujita, N., Ohishi, K., and Tsuruo, T., 1997, Stimulation of interleukin-11 production from osteoblast-like cells by transforming growth factor-beta and tumour cell factors. Int J Cancer, 71:422–428.

    Article  PubMed  Google Scholar 

  80. Southby, J., Kissin, M. W., Danks, J. A., Hayman, J. A., Moseley, J. M., Henderson, M. A., Bennett, R. C., and Martin, T. J., 1990, Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Res, 50:7710–7716.

    PubMed  Google Scholar 

  81. Henderson, M., Danks, J., Moseley, J., Slavin, J., Harris, T., McKinlay, M., Hopper, J., and Martin, T., 2001, Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases. J Natl Cancer Inst, 93:234–237.

    Article  PubMed  Google Scholar 

  82. Powell, G. J., Southby, J., Danks, J. A., Stillwell, R. G., Hayman, J. A., Henderson, M. A., Bennett, R. C., and Martin, T. J., 1991, Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res, 51:3059–3061.

    PubMed  Google Scholar 

  83. Thomas, R. J., Guise, T. A., Yin, J. J., Elliott, J., Horwood, N. J., Martin, T. J., and Gillespie, M. T., 1999, Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology, 140:4451–4458.

    Article  Google Scholar 

  84. Tamura, T., Udagawa, N., Takahashi, N., Miyaura, C., Tanaka, S., Yamada, Y., Koishihara, Y., Ohsugi, Y., Kumaki, K., Taga, T., and et al., 1993, Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A, 90:11924–11928.

    PubMed  Google Scholar 

  85. Kudo, O., Sabokbar, A., Pocock, A., Itonaga, I., Fujikawa, Y., and Athanasou, N. A., 2003, Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone, 32:1–7.

    Article  PubMed  Google Scholar 

  86. Suda, K., Udagawa, N., Sato, N., Takami, M., Itoh, K., Woo, J. T., Takahashi, N., and Nagai, K., 2004, Suppression of osteoprotegerin expression by prostaglandin E(2) is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol, 172:2504–2510.

    PubMed  Google Scholar 

  87. Moussad, E. E. and Brigstock, D. R., 2000, Connective tissue growth factor: what's in a name? Mol Genet Metab, 71:276–292.

    Article  PubMed  Google Scholar 

  88. Abreu, J. G., Ketpura, N. I., Reversade, B., and De Robertis, E. M., 2002, Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol, 4:599–604.

    PubMed  Google Scholar 

  89. Heldin, C. H. and Westermark, B., 1999, Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev, 79:1283–1316.

    PubMed  Google Scholar 

  90. Franchimont, N., Durant, D., Rydziel, S., and Canalis, E., 1999, Platelet-derived growth factor induces interleukin-6 transcription in osteoblasts through the activator protein-1 complex and activating transcription factor-2. J Biol Chem, 274:6783–6789.

    Article  PubMed  Google Scholar 

  91. Zhang, Z., Chen, J., and Jin, D., 1998, Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun, 251:190–194.

    Article  PubMed  Google Scholar 

  92. Yin, J. J., Mohammad, K. S., Kakonen, S. M., Harris, S., Wu-Wong, J. R., Wessale, J. L., Padley, R. J., Garrett, I. R., Chirgwin, J. M., and Guise, T. A., 2003, A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci U S A, 100:10954–10959.

    Article  PubMed  Google Scholar 

  93. Nelson, J. B., Hedican, S. P., George, D. J., Reddi, A. H., Piantadosi, S., Eisenberger, M. A., and Simons, J. W., 1995, Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med, 1:944–949.

    Article  PubMed  Google Scholar 

  94. Medinger, M., Adler, C. P., Schmidt-Gersbach, C., Soltau, J., Droll, A., Unger, C., and Drevs, J., 2003, Angiogenesis and the ET-1/ETA receptor system: immunohistochemical expression analysis in bone metastases from patients with different primary tumours. Angiogenesis, 6:225–231.

    Article  PubMed  Google Scholar 

  95. Kasperk, C. H., Borcsok, I., Schairer, H. U., Schneider, U., Nawroth, P. P., Niethard, F. U., and Ziegler, R., 1997, Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int, 60:368–374.

    Article  PubMed  Google Scholar 

  96. Le Brun, G., Aubin, P., Soliman, H., Ropiquet, F., Villette, J. M., Berthon, P., Creminon, C., Cussenot, O., and Fiet, J., 1999, Upregulation of endothelin 1 and its precursor by IL-1beta, TNF-alpha, and TGF-beta in the PC3 human prostate cancer cell line. Cytokine, 11:157–162.

    Article  Google Scholar 

  97. Rogers, M. J., Gordon, S., Benford, H. L., Coxon, F. P., Luckman, S. P., Monkkonen, J., and Frith, J. C., 2000, Cellular and molecular mechanisms of action of bisphosphonates. Cancer, 88:2961–2978.

    Article  PubMed  Google Scholar 

  98. Russell, R. G. and Rogers, M. J., 1999, Bisphosphonates: from the laboratory to the clinic and back again. Bone, 25:97–106.

    Article  PubMed  Google Scholar 

  99. Cameron, D., 2003, Proven efficacy of zoledronic acid in the treatment of bone metastases in patients with breast cancer and other malignancies. Breast, 12Suppl2:S22–29.

    Article  PubMed  Google Scholar 

  100. Rosen, L. S., Gordon, D., Tchekmedyian, S., Yanagihara, R., Hirsh, V., Krzakowski, M., Pawlicki, M., de Souza, P., Zheng, M., Urbanowitz, G., Reitsma, D., and Seaman, J. J., 2003, Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumours: a phase III, double-blind, randomized trial—the Zoledronic Acid Lung Cancer and Other Solid Tumours Study Group. J Clin Oncol, 21:3150–3157.

    Article  PubMed  Google Scholar 

  101. Croucher, P., Jagdev, S., and Coleman, R., 2003, The anti-tumour potential of zoledronic acid. Breast, 12Suppl2:S30–36.

    Article  PubMed  Google Scholar 

  102. Green, J. R., 2002, Bisphosphonates in cancer therapy. Curr Opin Oncol, 14:609–615.

    Article  PubMed  Google Scholar 

  103. Morony, S., Capparelli, C., Sarosi, I., Lacey, D. L., Dunstan, C. R., and Kostenuik, P. J., 2001, Osteoprotegerin inhibits osteolysis and decreases skeletal tumour burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res, 61:4432–4436.

    PubMed  Google Scholar 

  104. Body, J. J., Coleman, R. E., Lipton, A., Murphy, R., Holloway, D. L., Bekker, P. J., and DePaoli, A. M., 2003, Rapid, profound and prolonged suppression of bone turnover with a single subcutaneous dose of AMG-162 in women with breast cancer metastasis to bone. In: The 4th International Conference on cancer-induced bone diseases, San Antonio, Texas 76.

    Google Scholar 

  105. Sordillo, E. M., and Pearse, R. N., 2003, RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer, 97:802–812.

    Article  PubMed  Google Scholar 

  106. Body, J. J., Greipp, P., Coleman, R. E., Facon, T., Geurs, F., Fermand, J. P., Harousseau, J. L., Lipton, A., Mariette, X., Williams, C. D., Nakanishi, A., Holloway, D., Martin, S. W., Dunstan, C. R., and Bekker, P. J., 2003, A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer, 97:887–892.

    Article  PubMed  Google Scholar 

  107. Zhang, J., Dai, J., Yao, Z., Lu, Y., Dougall, W., and Keller, E. T., 2003, Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res, 63:7883–7890.

    PubMed  Google Scholar 

  108. Bakewell, S. J., Nestor, P., Prasad, S., Tomasson, M. H., Dowland, N., Mehrotra, M., Scarborough, R., Kanter, J., Abe, K., Phillips, D., and Weilbaecher, K., 2003, N. Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc Natl Acad Sci U S A, 100:14205–14210.

    Article  PubMed  Google Scholar 

  109. Lundstrom, A., Holmbom, J., Lindqvist, C., and Nordstrom, T., 1998, The role of alpha2 beta1 and alpha3 beta1 integrin receptors in the initial anchoring of MDA-MB-231 human breast cancer cells to cortical bone matrix. Biochem Biophys Res Commun, 250:735–740.

    Article  PubMed  Google Scholar 

  110. van der Pluijm, G., Vloedgraven, H., Papapoulos, S., Lowick, C., Grzesik, W., Kerr, J., and Robey, P. G., 1997, Attachment characteristics and involvement of integrins in adhesion of breast cancer cell lines to extracellular bone matrix components. Lab Invest, 77:665–675.

    PubMed  Google Scholar 

  111. Kumar, C. C., 2003, Integrin alpha v beta 3 as a therapeutic target for blocking tumour-induced angiogenesis. Curr Drug Targets, 4:123–131.

    Article  PubMed  Google Scholar 

  112. Engleman, V. W., Nickols, G. A., Ross, F. P., Horton, M. A., Griggs, D. W., Settle, S. L., Ruminski, P. G., and Teitelbaum, S. L., 1997, A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest, 99:2284–2292.

    PubMed  Google Scholar 

  113. Coussens, L. M., Fingleton, B., and Matrisian, L. M., 2002, Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295:2387–2392.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Eckhardt, B., Pouliot, N., Anderson, R. (2005). Influence of the Bone Microenvironment on Breast Cancer Metastasis to Bone. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_8

Download citation

Publish with us

Policies and ethics