Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agriculture and Agri-Food Canada (2002). Retrieved November 06, 2002, from http://res2.agr.ca/lacombe/pdf/hilites/00ResHiSpr.pdf.

    Google Scholar 

  • Araújo, F. F. de, and Hungria, M. (1999). Nodulação e rendimento de soja co-inoculada com Bacillus subtilis e Bradyrhizobium japonicum/B. elkanii, Pesq. Agropec. Bras., 34, 1633–1643.

    Google Scholar 

  • Bailey, L. D. (1988). Influence of single strains and a commercial mixture of Bradyrhizobium japonicum on growth, nitrogen accumulation and nodulation of two early-maturing soybean cultivars. Can. J. Plant Sci., 69, 41–418.

    Google Scholar 

  • Balatti, A. P., and Freire, J. R. J. (Eds.) (1996). Legume Inoculants. Selection and Characterization of Strains. Production, Use and Management. La Plata: Editorial Kingraf.

    Google Scholar 

  • Balatti. P. A., and Pueppke, S. G (1992). Identification of North American soybean lines that form nitrogen-fixing nodules with Rhizobium fredii USDA 257, Can. J. Plant Sci., 72, 49–55.

    Google Scholar 

  • Bashan, Y. (1986). Alginate beads as synthetic carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol., 51, 1089–1098.

    PubMed  Google Scholar 

  • Biswas, J. C., Ladha, J. K., Dazzo, F. B., Yanni, Y. G., and Rolfe, B. G. (2000). Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J., 92, 880–886.

    Google Scholar 

  • Brandão Junior, O., and Hungria, M. (2000). Efeito de concentrações de solução açucarada na aderência do inoculante turfoso às sementes, na nodulação e no rendimento da soja, Rev. Bras. Ci. Solo, 24, 515–526.

    Google Scholar 

  • Brockwell, J., and Bottomley, P. J. (1995). Recent advances in inoculant technology and prospects for the future. Soil. Biol. Biochem., 27, 683–697.

    CAS  Google Scholar 

  • Brockwell, J., Gault, R. R., Chase, D. L., Turner, G. L., and Bergersen, F. J. (1985). Establishment and expression of soybean symbiosis in a soil previously free of Rhizobium japonicum. Aust. J. Agric. Res., 36, 397–409.

    Article  Google Scholar 

  • Brockwell. J, Bottomley, P. J., and Thies, J. E. (1995). Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant Soil, 174, 143–180.

    Article  CAS  Google Scholar 

  • Brunel, B., Cleyet-Marel, J. C., Normand, P., and Bardin, R. (1988). Stability of Bradyrhizobium japonicum inoculants after introduction into soil. Appl. Environ. Microbiol., 54, 2636–2642.

    CAS  PubMed  Google Scholar 

  • Buendía-Clavería, A. M, Rodriguez-Navarro, D. N., Santamaría-Linaza, C., Ruíz-Saí nz, J. E., and Temprano-Vera, F. (1994). Evaluation of the symbiotic properties of Rhizobium fredii in European soils. Syst. Appl. Microbiol., 17, 155–160.

    Google Scholar 

  • Burdman, S., Sarig, S., Kigel, J., and Okon, Y. (1996). Field inoculation of common bean (Phaseolus vulgaris L.) and chickpea (Cicer arietinum L.) with Azospirillum brasilense strain CD. Symbiosis, 21, 41–48.

    Google Scholar 

  • Burton, J. C. (1967). Rhizobium culture and use. In H. J. Peppler (Ed.), Microbial Technology (pp. 1–33). New York, NY: Van Nostrand-Reinhold.

    Google Scholar 

  • Burton, J. C. (1975). Methods of inoculating seeds and their effect on survival of rhizobia. In P.S. Nutman (Ed.), Symbiotic Nitrogen Fixation in Plants (pp. 175–189), (International Biological Programme, 7). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Burton, J. C. (1976). Problems in obtaining adequate inoculation of soybeans. World Soybean Res. Sept, 170–179.

    Google Scholar 

  • Burton, J. C. (1981). Rhizobium inoculants for developing countries. Trop. Agric., 58, 291–295.

    Google Scholar 

  • Burton, J. C., and Curley, R. L. (1965). Comparative efficiency of liquid and peat-based inoculants on field-grown soybeans (Glycine max). Agron. J., 57, 379–381.

    Google Scholar 

  • Buttery, B. R., Park S. J., and Findlay, W. J. (1987). Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can J. Plant Sci., 67, 425–432.

    Google Scholar 

  • Campo, R. J., Albino, U. B., and Hungria, M. (2000). Importance of molybdenum and cobalt in the biological nitrogen fixation. In F. O. Pedrosa, M. Hungria, M. G Yates and W. E. Newton (Eds.), Nitrogen Fixation: From Molecules to Crop Productivity (pp. 597–598). Dordrecht, The Netherlands: Kluwer Academic Press.

    Google Scholar 

  • Campo, R. J., and Hungria, M. (2000a). Compatibilidade do Uso de Inoculantes e Fungicidas no Tratamento de Sementes de Soja (Boletim de Pesquisa, 4). Londrina, Brazil: Embrapa Soja.

    Google Scholar 

  • Campo, R. J., and Hungria, M. (2000b). Inoculação da soja em plantio direto. In Anais do Simpósio sobre Fertilidade do Solo e Nutrição de Plantas no Sistema Plantio Direto (pp. 146–160). Ponta Grossa, Brazil: Associação dos Engenheiros Agrônomos.

    Google Scholar 

  • Campo, R. J., and Hungria, M. (2002a). Importância dos micronutrientes na fixação biológica do nitrogênio. In O.F. Saraiva and C.B. Hoffman-Campo (Orgs.), Perspectivas do Agronegócio da Soja (pp. 355–366). Londrina, Brazil: Embrapa Soja.

    Google Scholar 

  • Campo, R. J., and Hungria, M. (2002b). Método alternativo para aplicação de inoculantes na presença de micronutrientes e fungicidas. In Resumos da Fertbio 2002 (CD Rom). Rio de Janeiro, Brazil: UFRRJ/SBCS.

    Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality and precision agriculture. Proc. Natl. Acad. Sci. USA, 96, 5952–5959.

    Article  CAS  PubMed  Google Scholar 

  • Catroux, G., Hartmann, A., and Revellin, C. (2001). Trends in rhizobial production and use. Plant Soil, 230, 21–30.

    Article  CAS  Google Scholar 

  • Cattelan, A. J., and Hungria, M. (1994). Nitrogen nutrition and inoculation. In Tropical Soybean Improvement and Production (pp. 201–215). Rome, Italy: FAO.

    Google Scholar 

  • Centro Internacional de Agricultura Tropical (CIAT) (1988). The Legume-Rhizobium Symbiosis: Evaluation, Selection and Agronomic Management. Cali, Colombia: CIAT.

    Google Scholar 

  • Chamblee, D. S., and Warren, Jr., R. D. (1990). Movement of rhizobia between alfalfa plants. Agron. J., 82, 283–286.

    Google Scholar 

  • Chao, W. L., and Alexander, M. (1984). Mineral soils as carriers for rhizobium inoculants. Appl. Environ. Microbiol., 47, 94–97.

    PubMed  Google Scholar 

  • Chatterjee, A., Balatti, P. A., Gibbons, W., and Pueppke S. G. (1990). Interactions of Rhizobium fredii USDA 257 and nodulation mutants derived from it with the agronomically improved soybean cultivar McCall. Planta, 180, 303–311.

    Google Scholar 

  • Chen, L. S., Figueredo, A., Pedrosa, F. O., and Hungria, M. (2000). Genetic characterization of soybean rhizobia in Paraguay. Appl. Environ. Microbiol., 66, 5099–5103.

    CAS  PubMed  Google Scholar 

  • Chen, L. S., Figueredo, A., Villani, H., Michajluk, J., and Hungria, M. (2002). Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean in Paraguay. Biol. Fert. Soils, 35, 448–457.

    Article  CAS  Google Scholar 

  • Chen, W. X., Yan, G. H., and Li, J. L. (1988). Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov., Int. J. Syst. Bacteriol., 38, 392–397.

    Google Scholar 

  • Chueire, L. M. O., and Hungria, M (1997). N2-fixation ability of Brazilian soybean cultivars with Sinorhizobium fredii and Sinorhizobium xinjiangensis, Plant Soil, 196, 1–5.

    Article  Google Scholar 

  • Ciafardini, G., and Lombardo, G. M. (1991). Nodulation, dinitrogen fixation, and yield improvement in second-crop soybean cover inoculated with Bradyrhizobium japonicum. Agron. J., 83, 622–625.

    CAS  Google Scholar 

  • Cregan, P. B., and Keyser, H. H. (1988). Influence of Glycine spp. on competitiveness of Bradyrhizobium japonicum and Rhizobium fredii. Appl. Environ. Microbiol., 54, 803–808.

    PubMed  Google Scholar 

  • Crispino, C. C., Franchini, J. C., Moraes, J. Z., Sibaldelle, R. N. R., Loureiro, M. F., Santos, E. N., et al. (2001). Adubação Nitrogenada na Cultura da Soja (Comunicado Técnico, 75). Londrina, Brazil: Embrapa Soja.

    Google Scholar 

  • Date, R. A. (2001). Advances in inoculant technology: A brief review. Aust. J. Exp. Agric., 41, 321–325.

    Article  CAS  Google Scholar 

  • Date, R. A., and Hillier, G. R. (1968). Molybdenum application in the lime of lime-pelleted subterranean clover seed. J. Aust. Inst. Agric. Sci., 34, 171–172.

    Google Scholar 

  • Date, R. A., and Roughley, R. J. (1977). Preparation of legume seed inoculants. In R. W. F. Hardy and A. H. Gibson (Eds.), A Treatise on Dinitrogen Fixation, Section IV, Agronomy and Ecology (pp. 243–275). New York, NY: John Wiley and Sons.

    Google Scholar 

  • De Polli, H., Souto, M., and Franco, A. A. (1986). Compatibilidade de Agrotóxicos com Rhizobium spp. e a Simbiose das Leguminosas (Documento, 3). Seropédica, Brazil: Embrapa-Uapnpbs.

    Google Scholar 

  • Diatloff, A. (1969). The introduction of Rhizobium japonicum to soil by seed inoculation of non-host legumes and cereals. Austr. J. Exp. Agric. Anim. Husb., 9, 357–360.

    Google Scholar 

  • Diatloff, A. (1977). Ecological studies of root nodule bacteria introduced into field environments. 6. Antigenic and symbiotic stability in Lotononis rhizobia over a 12 year period. Soil. Biol. Biochem., 9, 85–88.

    Article  Google Scholar 

  • Döbereiner, J., Franco, A. A., and Guzmán, I. (1970). Estirpes de Rhizobium japonicum de excepcional eficiência. Pesq. Agropec. Bras., 5, 155–161.

    Google Scholar 

  • Dommergues, Y. R., Diem, H. G., and Divies, C. (1979). Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl. Environ. Microbiol., 37, 779–781.

    CAS  PubMed  Google Scholar 

  • Dunigan, E. P., Bollich, P. K., Huchinson, R. L., Hicks, P. M., Zaunbrecher, F. C, Scott, S. G., and Mowers, R. P. (1984). Introduction and survival of an inoculant strain of Rhizobium japonicum in soil. Agron. J., 76, 463–466.

    Google Scholar 

  • Eaglesham, A. R. J. (1989). Global importance of Rhizobium as an inoculant. In R. Campbell and R. M. McDonald (Eds.), Microbial Inoculation of Crop Plants (pp. 29–48). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Elegba, M. S., and Rennie, R. J. (1984). Effect of different inoculant adhesive agents on rhizobial survival, nodulation, and nitrogenase (acetylene-reducing) activity of soybeans (Glycine max (L.) Merrill). Can. J. Soil. Sci., 64, 631–636.

    CAS  Google Scholar 

  • Estevez de Jensen, C., Percich, J. A., and Graham, P. H. (2002). Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res., 74, 107–115.

    Google Scholar 

  • Evans, J., O’Connor, G. E., Griffith, G., and Howieson, J. (1989). Rhizobial inoculant for iprodione-treated lupin seed: Evaluation of an iprodione-resistant Rhizobium lupini. Aust. J. Exp. Agric., 29, 641–646.

    Google Scholar 

  • Evans, J., Seidel, J., O’Connor, G. E., Watt, J., and Sutherland, M. (1991). Using omethoate insecticide and legume inoculant on seed. Aust. J. Exp. Agric., 31, 71–76.

    Article  CAS  Google Scholar 

  • Faria, S. M. D., De Polli, H., and Franco, A. A. (1985). Adesivos para inoculação e revestimento de sementes de leguminosas. Pesq. Agropec. Bras., 20, 169–176.

    Google Scholar 

  • Ferreira, M. C., and Hungria, M. (2002). Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crops Res., 79, 139–152.

    Article  Google Scholar 

  • Ferreira, M. C., Andrade, D. S., Chueire, L. M. de O., Takemura, S. M., and Hungria, M. (2000). Effects of tillage method and crop rotation on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol. Biochem., 32, 627–637.

    Article  CAS  Google Scholar 

  • Ferriss, R. S. (1984). Effects of microwave oven treatment on micro-organisms in soil. Phytopathology, 74, 121–126.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (1984). Legume Inoculants and Their Use. Rome, Italy: FAO.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (1991). Expert Consultation on Legume Inoculant Production and Quality Control. Rome, Italy: FAO.

    Google Scholar 

  • Fouilleux, G., Revellin, C., and Catroux, G. (1994). Short-term recovery of Bradyrhizobium japonicum during an inoculation process using mineral microgranules. Can. J. Microbiol., 40, 322–325.

    Google Scholar 

  • Fouilleux, G., Revellin, C., Hartmann, A., and Catroux, G. (1996). Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L.) Merr.) using granular inoculants amended with nutrients. FEMS Microb. Ecol., 20, 173–183.

    CAS  Google Scholar 

  • Frankenberg, C. L. C., Freire, J. R. J., and Thomas, R. W. S. P. (1995). Growth competition between two strains of Bradyrhizobium japonicum in broth and peat-based inoculant: Dinitrogen fixation efficiency and competition for nodulation sites. Rev. Bras. Microbiol., 26, 211–218.

    CAS  Google Scholar 

  • Franzluebbers, K., Hossner, L. R., and Juo, A. S. R. (1998). Integrated Nutrient Management for Sustained Crop Production in Sub-Saharan Agriculture (Tropical Soils TAMU Technology Bulletin 98-03). College Station, TX: Texas A & M University.

    Google Scholar 

  • Fred, E. B., Baldwin, I. L., and McCoy, E. (1932). Root Nodule Bacteria and Leguminous Plants. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Gault, R. R., Chase, D. L., and Brockwell, J. (1982). Effects of inoculation equipment on the viability of Rhizobium spp. in liquid inoculant for legumes. Aust. J. Exp. Agric. Anim. Husb., 22, 299–309.

    Article  Google Scholar 

  • Gaur, Y. D., Sem, A. N., and Subba Rao, N. S. (1980). Improved legume-rhizobium symbiosis by inoculating preceding cereal crop with Rhizobium. Plant Soil, 54, 313–316.

    Article  Google Scholar 

  • Gibson, A. H., Date, R. A., Ireland, J. A., and Brockwell, J. (1976). A comparison of competitiveness and persistence amongst five strains of Rhizobium trifolii. Soil. Biol. Biochem., 8, 395–401.

    Article  Google Scholar 

  • Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems. Wallingford, UK: CAB International.

    Google Scholar 

  • Giller, K. E., and Cadisch, G. (1995). Future benefits from biological nitrogen fixation: An ecological approach to agriculture. Plant Soil, 174, 255–277.

    Article  CAS  Google Scholar 

  • Gomez, M., Revellin, C., Hartmann, A., and Catroux, G. (1995). Improved enumeration of Bradyrhizobium japonicum in commercial soybean inoculants using selective media. Lett. Appl. Microbiol., 21, 142–145.

    Google Scholar 

  • Graham, P. H. (1981). Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: A review. Field Crops Res., 4, 93–112.

    Article  Google Scholar 

  • Graham, P. H., Morales, V. M., and Zambrano, O. (1974). Seed pelleting of a legume to supply molybdenum. Turrialba, 24, 335–336.

    CAS  Google Scholar 

  • Graham-Weiss, L., Bennett, M. L., and Paau, A. S. (1987). Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Appl. Environ. Microbiol., 53, 2138–2140.

    CAS  PubMed  Google Scholar 

  • Hall, A., and Clark, N. (1995). Coping with change, complexity and diversity in agriculture-the case of rhizobial inoculants in Thailand. World Dev., 23, 1601–1614.

    Article  Google Scholar 

  • Ham, G. E., Frederick, L. R., and Anderson, I. C. (1971). Serogroups of Rhizobium japonicum in soybean nodules samples in Iowa. Agron. J., 63, 69–72.

    Google Scholar 

  • Hardarson, G. (1993). Methods for enhancing symbiotic nitrogen fixation. Plant Soil, 152, 1–17.

    Google Scholar 

  • Hely, F. W., Hutchings, R. J., and Zorin, M. (1976). Legume inoculation by spraying suspensions of nodule bacteria into soil beneath seed. J. Aust. Inst. Agric. Sci., 42, 241–244.

    Google Scholar 

  • Horikawa, Y., and Ohtsuka, H. (1996a). Effects of coating and adhesive on the inoculation of Rhizobium meliloti to alfalfa (Medicago sativa L.) seeds for nodulation and seedling growth. Grass. Sci., 41, 275–279.

    Google Scholar 

  • Horikawa, Y., and Ohtsuka, H. (1996b). Storage conditions and nodule formation of coated alfalfa (Medicago sativa L.) seeds inoculated with Rhizobium meliloti. Grass. Sci., 42, 7–12.

    CAS  Google Scholar 

  • Hungria, M., and Araújo, R. S. (1995). Relato da VI reunião de laboratórios para recomendação de estirpes de Rhizobium e Bradyrhizobium. In M. Hungria, E. L. Balota, A. Colozzi-Filho, D. S. Andrade (Eds.), Microbiologia do Solo: Desafios para o Século XXI (pp. 476–489). Londrina, Brazil: Iapar/Embrapa-CNPSo.

    Google Scholar 

  • Hungria, M., and Bohrer, T. R. J. (2000). Variability of nodulation and dinitrogen fixation capacity among soybean cultivars. Biol. Fert. Soils, 31, 45–52.

    Article  CAS  Google Scholar 

  • Hungria, M., and Vargas, M. A. T. (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res., 65, 151–164.

    Article  Google Scholar 

  • Hungria, M., Andrade, D. S., Chueire, L. M. de O., Probanza, A., Guttierrez-Mañero, F. J., and Megías, M. (2000a). Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem., 32, 1515–1528.

    Article  CAS  Google Scholar 

  • Hungria, M., Boddey, L. H., Santos, M. A., and Vargas, M. A. T. (1998). Nitrogen fixation capacity and nodule occupancy by Bradyrhizobium japonicum and B. elkanii strains. Biol. Fert. Soils, 27, 393–399.

    Article  CAS  Google Scholar 

  • Hungria, M., Campo, R. J., Chueire, L. M. O., Grange, L., and Megías, M. (2001a). Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biol. Fert. Soils, 33, 387–394.

    CAS  Google Scholar 

  • Hungria, M., Campo, R. J., and Mendes, I. C. (2001b). Fixação Biológica do Nitrogênio na Cultura da Soja (Circular Técnica, 13). Londrina, Brazil: Embrapa Soja/Embrapa Cerrados.

    Google Scholar 

  • Hungria, M., Campo, R. J., and Mendes, I. C. (2002). Aspectos básicos e aplicados da fixação simbiótica do nitrogênio. In O. F. Saraiva and C. B. Hoffman-Campo (Org.), Perspectivas do Agronegócio da Soja (pp. 258–268). Londrina, Brazil: Embrapa-Soja.

    Google Scholar 

  • Hungria, M., Campo, R. J., and Mendes, I. C. (2003). Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fert. Soils, 39, 88–93.

    Article  Google Scholar 

  • Hungria, M., Chueire, L. M. de O., Coca, R. G., and Megías, M. (2001c). Preliminary characterization of fast growing strains isolated from soybean nodules in Brazil. Soil Biol. Biochem., 33, 1349–1361.

    Article  CAS  Google Scholar 

  • Hungria, M., Vargas, M. A. T., Araujo, R. S., Kurihara, C., Maeda, S., Sá, et al. (2000b). Brazilian trials to evaluate the effects of soybean reinoculation. In F. O. Pedrosa, M. Hungria, M. G. Yates and W. E. Newton (Eds.), Nitrogen Fixation: From Molecules to Crop Productivity (pp. 549). Dordrecht, The Neetherlands: Kluwer Academic Press.

    Google Scholar 

  • Hynes, R. K., Craig, K. A., Covert, D., Smith, R. S., and Rennie, R. J. (1995). Liquid rhizobial inoculants for lentil and field pea. J. Prod. Agric., 8, 547–552.

    Google Scholar 

  • Jauhri, K. S., Gupta, M., and Sadasivam, K. V. (1989). Agro-industrial wastes as carriers for bacterial inoculants. Biol. Wastes, 27, 81–86.

    Article  Google Scholar 

  • Jawson, M. D., Franzluebbers, A. J., and Berg, R. K. (1989). Bradyrhizobium japonicum survival in and soybean inoculation with fluid gels. Appl. Environ. Microbiol., 55, 617–622.

    PubMed  Google Scholar 

  • Jones, D. G., and Hardarson, G. (1979). Variation within and between white clover varieties in their preference for strains of Rhizobium trifolii. Ann. Appl. Biol., 82, 221–228.

    Google Scholar 

  • Jung, G., Mugnier, J., Diem, H. G., and Dommergues, Y. R. (1982). Polymerase entrapped Rhizobium as an inoculant for legumes. Plant Soil, 65, 219–231.

    CAS  Google Scholar 

  • Karanja, N., Freire, J., Gueye, M., and DaSilva, E. (2000). MIRCEN networking: Capacity building and BNF technology transfer in Africa and Latin America. AgBiotechNet, 2, ABN 043.

    Google Scholar 

  • Keyser, H. H., Bohlool, B. B., Hu, T. S., and Weber, D. F. (1982). Fast-growing rhizobia isolated from root nodules of soybeans. Science, 215, 1631–1632.

    Google Scholar 

  • Keyser, H. H., Somasegaran P., and Bohlool, B. B. (1993). Rhizobial ecology and technology. In F. B. Metting, Jr. (Ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management (pp. 205–226). New York, NY: Marcel Dekker.

    Google Scholar 

  • Khatri, A. A., Choksey, M., and D’silva, E. (1973). Rice husk as the medium for legume inoculants. Sci. Cult., 39, 194–196.

    Google Scholar 

  • Kremer, R. J., and Peterson, H. L. (1982). Effect of inoculant carrier on survival of Rhizobium on inoculated seed. Soil Sci., 134, 177–125.

    Google Scholar 

  • Lapinskas, E. B. (1990). Effect of different methods of passage through a plant host on the effectiveness of clover nodule bacteria. Mikrobiologia, 49, 535–540.

    Google Scholar 

  • Lindström, K., Lipsanen, P., and Kaijalainen, S. (1990). Stability of markers used for identification of two Rhizobium galegae inoculant strains after five years in the field. Appl. Environ. Microbiol., 56, 444–450.

    PubMed  Google Scholar 

  • Loh, J., Carlson, R. W., York, W. S., and Stacey, G. (2002). Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc. Natl. Acad. Sci. USA, 99, 14446–14451.

    Article  CAS  PubMed  Google Scholar 

  • Lowther, W., and Patrick, H. N. (1995). Rhizobium strain requirements for improved nodulation of Lotus corniculatus. Soil Biol. Biochem., 27, 721–724.

    Article  CAS  Google Scholar 

  • Lupwayi, N. Z., Olsen, P. E., Sande, E. S., Kayser, H. H., Collins, M. M., Singleton, P. W., and Rice, W. A. (2000). Inoculant quality and its evaluation. Field Crops Res., 65, 259–270.

    Article  Google Scholar 

  • Maier, R. J., and Triplett, E. W. (1996). Towards more productive, efficient and competitive nitrogen-fixing symbiotic bacteria. Crit. Rev. Plant Sci., 15, 191–234.

    Google Scholar 

  • Marufu, L., Karanja, N., and Ryder, M. (1995). Legume inoculant production and use in east and southern Africa. Soil Biol. Biochem., 27, 735–738.

    Article  CAS  Google Scholar 

  • Materon, L. A., and Weaver, R. W. (1985). Inoculant maturity influences survival of rhizobia on seed. Appl. Environ. Microbiol., 49, 465–467.

    PubMed  Google Scholar 

  • McDermott, T. R., and Graham, P. H. (1989). Bradyrhizobium japonicum inoculant mobility, nodule occupancy. and acetylene reduction in the soybean root system, Appl. Environ. Microbiol., 55, 2493–2498.

    CAS  PubMed  Google Scholar 

  • McLeod, R. W., and Roughley, R. J. (1961). Freeze-dried cultures as commercial legume inoculants. Aust. J. Exp. Agric. Anim. Husb., 1, 29–33.

    Article  Google Scholar 

  • McLoughlin, T. J., Owens, P. A., and Scott, A. (1985). Competition studies with fast-growing Rhizobium japonicum strains. Can. J. Microbiol., 31, 220–223.

    Google Scholar 

  • Mendes, I. C., Vargas, M. A. T., and Hungria, M. (2000). Estabelecimento de Estirpes de Bradyrhizobium japonicum/B. elkanii e seus Efeitos na Reinoculação da Soja em Solos de Cerrado (Documentos, 20). Planaltina, Brazil: Embrapa Cerrados.

    Google Scholar 

  • Mostasso, L., Mostasso, F. L., Dias, B. G., Vargas, M. A. T., and Hungria, M. (2002). Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Res., 73, 121–132.

    Article  Google Scholar 

  • Mpeperecki, S., Javaheri, F., Davis, F., and Giller, K. E. (2000). Soybean and sustainable agriculture: promiscuous soybeans in Southern Africa. Field Crops Res., 65, 137–150.

    Google Scholar 

  • Nazih, N., and Weaver, R. W. (1994). Numbers of clover rhizobia needed for crown nodulation and early growth of clover in soil. Biol. Fert. Soils, 23, 110–112.

    Google Scholar 

  • Neves, M. C. P., Didonet, A. D., Duque, F. F., and Döbereiner, J. (1985). Rhizobium strain effects on nitrogen transport and distribution in soybeans. J. Exp. Bot., 36, 1179–1192.

    CAS  Google Scholar 

  • Nishi, C. Y. M., Boddey, L. H, Vargas, M. A. T., and Hungria, M. (1996). Morphological, physiological and genetic characterization of two new Bradyrhizobium strains recently recommended as Brazilian commercial inoculants for soybean. Symbiosis, 20, 147–162.

    CAS  Google Scholar 

  • Okon, Y., and Labandera-Gonzalez, C. A. (1994). Agronomic applications of Azospirillum-an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem., 26, 1591–1601.

    Article  CAS  Google Scholar 

  • Olsen, P. E., Rice, W. A., and Collins, M. M. (1994). Biological contaminants in North American legume inoculants. Soil Biol. Biochem., 27, 699–701.

    Google Scholar 

  • Olsen, P. E., Rice, W. A., Bordeleau, L. M., Demidoff, A. H., and Collins, M. M. (1996). Levels and identities of non-rhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can. J. Microbiol., 42, 72–75.

    CAS  PubMed  Google Scholar 

  • Panzireri, M., Marchettini, N., and Hallam, T. G. (2000). Importance of the Bradyrhizobium japonicum symbiosis for the sustainability of a soybean cultivation. Ecol. Model., 135, 301–310.

    Google Scholar 

  • Parker, F. E., and Vincent, J. M. (1981). Sterilization of peat by gamma radiation, Plant Soil, 61, 285–293.

    Article  Google Scholar 

  • Patrick, H. N., and Lowther, W. (1995). Influence of the number of rhizobia on the nodulation and establishment of Trifolium ambiguum. Soil Biol. Biochem., 27, 717–720.

    Article  CAS  Google Scholar 

  • Peres, J. R. R., and Vidor, C. (1980). Seleção de estirpes de Rhizobium japonicum e competitividade por sítios de infecção nodular em cultivares de soja. Agron. Sul Riogr., 16, 205–219.

    Google Scholar 

  • Peres, J. R. R., Mendes, I. C., Suhet, A. R., and Vargas, M. A. T. (1993). Eficiência e competitividade de estirpes de rizóbio para a soja em solos de Cerrados. R. Bras. Ci. Solo, 17, 357–363.

    Google Scholar 

  • Peres, J. R. R., Suhet, A. R., and Vargas, M. A. T. (1986). Sobrevivência de estirpes de Rhizobium japonicum na superfície de sementes de soja inoculadas. Pesq. Agropec. Bras., 21, 489–493.

    Google Scholar 

  • Peres, J. R. R., Suhet, A. R., and Vargas, M. A. T. (1989). Estabelecimento de Bradyrhizobiumjaponicum em um solo de cerrado pela inoculação de sementes de arroz. Rev. Bras. Ci. Solo, 13, 35–39.

    Google Scholar 

  • Peres, J. R. R., Vargas, M. A. T., and Suhet, A. R. (1984). Variabilidade na eficiência de fixar nitrogênio entre isolados de uma mesma estirpe de Rhizobium japonicum. Rev. Bras. Ci. Solo, 8, 193–196.

    CAS  Google Scholar 

  • Ramos, M. L. G., and Boddey, R. M (1987). Yield and nodulation of Phaseolus vulgaris and the competitivity of an introduced Rhizobium strain: Effects of lime, mulch and repeated cropping. Soil Biol. Biochem., 19, 171–177.

    Article  Google Scholar 

  • Rebah, F. B, Tyagi, R. D., and Prévost, D. (2002). Wastewater sludge as a substrate for growth and carrier for rhizobia: The effect of storage conditions on survival of Sinorhizobium meliloti. Biores. Technol., 83, 145–151.

    Google Scholar 

  • Revellin, C., Meunier, G., Giraud, J. J., Sommer, G., Wadoux, P., and Catroux, G. (2000). Changes in the physiological and agricultural characteristics of peat-based Bradyrhizobium japonicum inoculants after long-term storage. Appl. Microbiol. Biotechnol., 54, 206–11.

    Article  CAS  PubMed  Google Scholar 

  • Rice, W. A., Olsen, P. E., Lupwayi, N. Z., and Clayton, G. W. (2001). Field comparison of preinoculated alfalfa seeds and traditional seed inoculation with inoculant prepared in sterile or non-sterile peat. Commun. Soil Sci. Plant Anal., 32, 2091–2107.

    Article  CAS  Google Scholar 

  • Rogers, D. D., Warren, R. D., and Chamblee, D. S. (1982). Remedial postemergence legume inoculation with Rhizobium. Agron. J., 74, 613–619.

    Google Scholar 

  • Roughley, R. J. (1970). The preparation and use of legume seed inoculants. Plant Soil, 32, 675–701.

    Google Scholar 

  • Roughley, R. J., and Vincent, J. M. (1967). Growth and survival of Rhizobium spp. in peat culture. J. Appl. Bacteriol., 30, 362–376.

    Google Scholar 

  • Sanchez, P. A. (2002). Soil fertility and hunger in Africa. Science, 295, 2019–2020.

    Article  CAS  PubMed  Google Scholar 

  • Santos, M. A., Vargas, M. A. T., and Hungria, M. (1999). Characterization of soybean bradyrhizobia strains adapted to the Brazilian Cerrados Region. FEMS Microbiol. Ecol., 30, 261–272.

    CAS  PubMed  Google Scholar 

  • Scholla, M. H., and Elkan, G. H. (1984). Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol., 34, 484–486.

    Google Scholar 

  • Sessitsch, A., Howieson, J. G., Perret, X., Antoun, H., and Martínez-Romero, E. (2002). Advances in Rhizobium research. Crit. Rev. Plant Sci., 21, 323–378.

    CAS  Google Scholar 

  • Singleton, P. W., and Tavares, J. W. (1986). Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl. Environ. Microbiol., 51, 1013–1018.

    PubMed  Google Scholar 

  • Smith, R. S. (1992). Legume inoculant formulation and application. Can. J. Microbiol., 38, 485–492.

    Google Scholar 

  • Somasegaran, P. (1985). Inoculant production with diluted liquid cultures of Rhizobium spp. and autoclaved peat: Evaluation of diluents, Rhizobium spp., peats, sterility requirements, storage, and plant effectiveness. Appl. Environ. Microbiol., 50, 398–405.

    PubMed  Google Scholar 

  • Somasegaran, P. (1991). Inoculant Production with Emphasis on Choice of Carriers, Methods of Production and Reliability Testing/Quality Assurance Guidelines (pp. 87–105). Rome, Italy: FAO.

    Google Scholar 

  • Somasegaran, P., and Bohlool, B. B. (1990). Single-strain vs. multistrain inoculation: Effect of soil mineral N availability on rhizobial strain effectiveness and competition for nodulation on chickpea, soybean and drybean. Appl. Environ. Microbiol., 56, 3298–3303.

    PubMed  Google Scholar 

  • Somasegaran, P., and Hoben, H. J. (1994). The Handbook for Rhizobia: Methods in Legume-Rhizobia Technology. New York, NY: Springer Verlag.

    Google Scholar 

  • Sparrow, S. D., and Ham, G. E. (1983). Survival of Rhizobium phaseoli in six carrier materials. Agron. J., 75, 181–184.

    Google Scholar 

  • Stephens, J. H. G., and Rask, H. M. (2000). Inoculant production and formulation. Field Crops Res., 65, 249–258.

    Article  Google Scholar 

  • Strijdom, B. W., and Deschodt, C. C. (1976). Carriers of rhizobia and the effects of prior treatment on the survival of rhizobia. In P.S. Nutman (Ed.), Symbiotic Nitrogen Fixation in Plants (pp. 151–168). London, UK: Cambridge University Press.

    Google Scholar 

  • Sutherland, J. M., Odee, D. W., Muluvi, G. M., McInroy, S. G., and Patel, A. (2000). Single and multistrain rhizobial inoculation of African acacias in nursery conditions. Soil Biol. Biochem. 32, 323–333.

    Article  CAS  Google Scholar 

  • Thies, J. E, Singleton, P. W., and Bohlool, B. B. (1991). Influence of the size of indigenous rhizobial population on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl. Environ. Microbiol., 57, 19–28.

    PubMed  Google Scholar 

  • Thompson, D. J., and Stout, D. G. (1992). Influence of three commercial seed coatings on alfalfa seedling emergence, nodulation and yield. J. Seed Techn., 16, 9–16.

    Google Scholar 

  • Thompson, J. A. (1980). Production and quality control of legume inoculants. In F.J. Bergersen (Ed.), Methods for Evaluating Nitrogen Fixation (pp. 489–533). New York, NY: John Wiley & Sons Inc.

    Google Scholar 

  • Thompson, J. A., Brockwell, J., and Roughley, R. J. (1975). Preinoculation of legume seed. J. Aust. Inst. Agric. Sci., 41, 253–254.

    Google Scholar 

  • Tong, Z., and Sadowsky, M. J. (1994). A selective medium for the isolation and quantification of Bradyrhizobium japonicum and Bradyrhizobium elkanii strains from soils and inoculants. Appl. Environ. Microbiol., 60, 581–586.

    CAS  PubMed  Google Scholar 

  • Urbana Laboratories (2002). Retrieved November 06, 2002, from www.urbana-labs.com.

    Google Scholar 

  • van Elsas, J. D., and Heijnen, C. E. (1990). Methods for the introduction of bacteria into soil: A review. Biol. Fert. Soils, 10, 127–133.

    Google Scholar 

  • van Kessel, C., and Hartley, C. (2000). Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Res., 65, 165–181.

    Google Scholar 

  • Vargas, M. A. T., and Hungria, M. (1997). Fixação biológica do N2 na cultura da soja. In M. A. T. Vargas and M. Hungria (Eds.), Biologia dos Solos de Cerrados (pp. 297–360). Planaltina, Brazil: Embrapa-CPAC.

    Google Scholar 

  • Vargas, M. A. T., Mendes, I. C., Suhet, A. R., and Peres, J. R. R. (1992). Duas Novas Estirpes de Rizóbio para a Inoculação da Soja (Comunicado Técnico, 62). Planaltina, Brazil: Embrapa-CPAC.

    Google Scholar 

  • Vargas, M. A. T., and Suhet, A. R (1980). Efeito de tipos e níveis de inoculantes na soja cultivada em um solo de cerrado. Pesq. Agropec. Bras., 15, 343–347.

    Google Scholar 

  • Vincent, J. M (1970). Manual for the Practical Study of Root Nodule Bacteria (International Biological Programme, 15). Oxford, UK: Blackwell.

    Google Scholar 

  • Vincent, J. M. (1958). Survival of the root nodule bacteria. In E. G. Hallsworth (Ed.), Nutrition of the Legumes (pp. 108–123). New York, NY: Academic Press.

    Google Scholar 

  • Voelcker, J. A. (1896) “Nitragin” or the use of “pure cultivation” bacteria for leguminous crops. J. Roy. Agr. Soc. 3rd Ser., 7, 253–264.

    Google Scholar 

  • Walter, R. W., and Paau, A. S. (1993). Microbial inoculant production and formulation. In F. B. Metting Jr (Ed.), Soil Microbial Ecology (pp. 579–594). New York, NY: Marcel Dekker Inc.

    Google Scholar 

  • Weaver, R. W., and Frederick, L. R (1974). Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. I-Greenhouse studies. Agron. J., 66, 229–232.

    Google Scholar 

  • Weber, D. F., Keyser, H. H., and Uratsu, S. L. (1989). Serological distribution of Bradyrhizobium japonicum from U.S. soybean production areas. Agron. J., 81, 786–789.

    Google Scholar 

  • Xie, Z. P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., et al. (1995). Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol., 108, 1519–1525.

    CAS  PubMed  Google Scholar 

  • Yardin, M. R., Kennedy, I. V., and Thies, J. E. (2000). Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides. Rad. Phys. Chem., 57, 565–568.

    Article  CAS  Google Scholar 

  • Zhang, F., and Smith, D. L. (1996). Genistein accumulation in soybean (Glycine max L. Merr.) root systems under suboptimum root zone temperatures. J. Exp. Bot., 47, 785–792.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Hungria, M., Loureiro, M.F., Mendes, I.C., Campo, R.J., Graham, P.H. (2005). Inoculant Preparation, Production and Application. In: Werner, D., Newton, W.E. (eds) Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3544-6_11

Download citation

Publish with us

Policies and ethics