Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A-Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophysical Journal 74:1564–1578

    Google Scholar 

  • Amblard F, Maggs AC, Yurke B, Pargellis AN, Leibler S (1996) Subdiffusion and anomalous local viscoelasticity in actin networks. Physical Review Letters 77:4470–4473

    Article  Google Scholar 

  • Amblard F, Yurke B, Pargellis A, Leibler S (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67:818–827

    Article  Google Scholar 

  • Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal 61:569–582

    Google Scholar 

  • Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America 94:4853–4860

    Article  Google Scholar 

  • Ashkin A (1998) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Methods in Cell Biology 55:1–27

    Google Scholar 

  • Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheometry study. Biophysical Journal 80:2649–2657

    Google Scholar 

  • Bausch AR, Möller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophysical Journal 76:573–579

    Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical Journal 75:2038–2049

    Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic Light Scattering with applications to chemistry, biology, and physics. Dover, Mineola

    Google Scholar 

  • Binning G, Quate CF, Gerber C (1986) Atomic Force Microscope. Physical Review Letters 56:930–933

    Google Scholar 

  • Block SM (1992) Making light work with optical tweezers. Nature 360:493–495

    Article  Google Scholar 

  • Bottomley LA, Coury JE, First PN (1996) Scanning probe microscopy. Biophysical Journal 74:1564–1578

    Google Scholar 

  • Butt H-J, Jaschke M (1995) Thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  • Crick F, Hughes A (1950) The physical properties of the cytoplasm. Experimental Cell Research 1:37–80

    Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy. Journal of Colloid and Interface Science 179:298–310

    Article  Google Scholar 

  • Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Physical Review Letters 85:888–891

    Article  Google Scholar 

  • Dasgupta BR, Tee S-Y, Crocker JC, Frisken BJ, Weitz DA (2001) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Physical Review E 65:051505

    Google Scholar 

  • Dinsmore AD, Weeks ER, Prasad V, Levitt AC, Weitz DA (2001) Three-dimensional confocal microscopy of colloids. Applied Optics 40:4152–4159

    Google Scholar 

  • Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the AFM. Langmuir 14:3320–3325

    Article  Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Channell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and biological processes in water with AFM. Science 243:1586–1589

    Google Scholar 

  • Dvorak JA, Nagao E (1998) Kinetic analysis of the mitotic cycle of living vertebrate cells by atomic force microscopy. Experimental Cell Research 242:69–74

    Article  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Physical Review Letters 87:148102(4)

    Article  Google Scholar 

  • Fällman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Applied Optics 36:2107–2113

    Google Scholar 

  • Feneberg W, Westphal M, Sackmann E (2001) Dictyostelium cells’ cytoplasm as an active viscoplastic body. European Biophysical Journal 30:284–294

    Google Scholar 

  • Ferry J (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Ford NC (1985) Light Scattering Apparatus. In: Pecora R (ed) Dynamic light scattering: Applications of photon correlation spectroscopy. Plenum, London pp. 7–58

    Google Scholar 

  • Freundlich H, Seifriz W (1922) Ueber die elastizität von solen und gelen. Zeitschrift fur physikalische chemie 104:233

    Google Scholar 

  • Gisler T, Weitz DA (1998) Tracer microrheology in complex fluids. Current Opinion in Colloid and Interface Science 3:586–592

    Article  Google Scholar 

  • Gisler T, Weitz DA (1999) Scaling of the microrheology of semidilute F-actin solutions. Physical Review Letters 82:1606–1609

    Google Scholar 

  • Gisler T, Ruger H, Egelhaaf SU, Tschumi J, Schurtenberger P, Ricka J (1995) Modeselective dynamic light scattering: theory versus experimental realization. Applied Optics 34:3546–3553

    Google Scholar 

  • Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Physical Review Letters 79:3286–3289

    Article  Google Scholar 

  • Gittings MR, Cipelletti L, Trappe V, Weitz DA, In M, Marques C (2000) Structure of guar in solutions of H20 and D20: An ultra-small-angle light scattering study. Journal of Physical Chemistry B 104:4381–4386

    Article  Google Scholar 

  • Goldman WH, Ezzell RM (1996) Viscoelasticity in wild-type and vinculin-deficient mouse F9 embryonic carcinoma cells examined by atomic force microscopy. Experimental Cell Research 226:234–237

    Google Scholar 

  • Heilbronn A (1922) Eine neue methode zur bestimmung der viskosität lebender protoplasten. Jahrbuch der Wissenschaftlichen Botanik 61:284–338

    Google Scholar 

  • Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microcopy. Science 257:1944–1946

    Google Scholar 

  • Hénon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophysical Journal 76:1145–1151

    Google Scholar 

  • Hertz H (1881) Ãœber die berührung fester elastischer körper. J. Reine Agnew. Mathematik 92:156–171

    Google Scholar 

  • Hiramoto Y (1969) Mechanical properties of the protoplasm of the sea urchin egg. Experimental Cell Research 56:201–218

    Google Scholar 

  • Hoh JH, Schoenenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. Journal of Cell Science 107:1105–1114

    Google Scholar 

  • Hough LA, Ou-Yang HD (1999) A new probe for mechanical testing of nanostructures in soft materials. Journal of Nanoparticle Research 1:495–499

    Article  Google Scholar 

  • Johnson CS, Gabriel DA (1995) Laser Light Scattering. Dover, New York.

    Google Scholar 

  • Joosten JGH, Gelade ETF, Pusey PN (1990) Dynamic light scattering by non-ergodic media: Brownian particles trapped in polyacrylamide gels Physical Review A 42:2161–2175

    Google Scholar 

  • Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: the use of cylindrical optics to encode particle position. Biophysical Journal 67:1291–1300

    Google Scholar 

  • Kasas S, Thomson NH, Smith BL, Hansma PK, Mikossy J, Hansma HG (1997) Biological applications of the AFM: from single molecules to organs. International Journal of Imaging Systems and Technology 8:151–161

    Article  Google Scholar 

  • Keller M, Schilling J, Sackmann E (2001) Oscillatory magnetic bead rheometer for complex fluid microrheometry. Review of Scientific Instruments 72:3626–3624

    Article  Google Scholar 

  • King M, Macklem PT (1977) Rheological properties of microliter quantities of normal mucus. Journal of Applied Physiology 42:797–802

    Google Scholar 

  • Landau LD, Lifshitz EM (1986) Theory of Elasticity. Pergamon Press, Oxford

    Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Levine AJ, Lubensky TC (2000) One-and two-particle microrhelogy. Physical Review Letters 85:1774–1777

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. VCH, New York

    Google Scholar 

  • Mahaffy RE, Shih CK, MacKintosh FC, Käs J (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Physical Review Letters 85:880–883

    Article  Google Scholar 

  • Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica Acta 39: 371–378

    Article  Google Scholar 

  • Mason TG, Ganesan K, Van Zanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Physical Review Letters 79:3282–3285

    Article  Google Scholar 

  • Mason TG, Gang H, Weitz DA (1996) Rheology of complex fluids measured by dynamic light scattering. Journal of Molecular Structure 383:81–90

    Article  Google Scholar 

  • Mason TG, Gang H, Weitz DA (1997) Diffusing-wave spectroscopy measurements of viscoelasticity of complex fluids. Journal of the Optical Society of America 14:139–149

    Google Scholar 

  • Mason TG, Gisler T, Kroy K, Frey E, Weitz DA (2000) Rheology of F-actin solutions determined from thermally driven tracer motion. Journal of Rheology 44:917–928

    Google Scholar 

  • Mason TG, Weitz DA (1995) Optical measurements of the frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters 74:1250–1253

    Article  Google Scholar 

  • McGrath JL, Hartwig JH, Kuo SC (2000) The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophysical Journal 79:3258–3266

    Google Scholar 

  • Mio C, Gong T, Terray A, Marr DWM (2000) Design of a scanning laser optical trap for multiparticle manipulation. Review of Scientific Instruments 71:2196–2200

    Article  Google Scholar 

  • Mio C, Marr DWM (2000) Optical Trapping for the Manipulation of Colloidal Particles. Advanced Materials 12:917–920

    Article  Google Scholar 

  • Nemoto S, Togo H (1998) Axial force acting on a dielectric sphere in a focused laser beam. Applied Optics 37:6386–6394

    Article  Google Scholar 

  • Neto PAM, Nussenzveig HM (2000) Theory of optical tweezers. Europhysics Letters 50:702–708

    Google Scholar 

  • Ou-Yang HD, (1999) Design and applications of oscillating optical tweezers for direct measurements of colloidal forces. In: Farinato RS and Dubin PL (eds) Colloid-Polymer Interactions: From Fundamentals to Practice. Wiley, New York, pp 385–405

    Google Scholar 

  • Ovryn B (2000) Three-dimensional forward scattering particle image velocimetry applied to a microscopic field of view. Experiments in Fluids 29:S175–S184

    Article  Google Scholar 

  • Ovryn B, Izen SH (2000) Imaging of transparent spheres through a planar interface using a high numerical-aperture optical microscope. Journal of the Optical Society of America, A 17:1202–1213

    Google Scholar 

  • Palmer A, Mason TG, Xu J, Kuo SC, Wirtz D (1999) Diffusing wave spectroscopy microrheology of actin filament networks. Biophysical Journal 76:1063–1071

    Google Scholar 

  • Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing Wave Spectroscopy. Physical Review Letters 60:1134–1137

    Article  Google Scholar 

  • Pusey PN, van Megen W (1989) Dynamic Light Scattering by non-ergodic media. Physica A 157:705–741

    Article  Google Scholar 

  • Putman CA, Werf KOVD, Grooth BGD, Hulst NFV, Greve J (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophysical Journal 67:1749–1753

    Google Scholar 

  • Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophysical Journal 66:2159–2165

    Google Scholar 

  • Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophysical Journal 69:264–270

    Google Scholar 

  • Radmacher M, Fritz M, Kasher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophysical Journal 70:556–567

    Google Scholar 

  • Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells-imaging soft samples with AFM. Science 257:1900–1905

    Google Scholar 

  • Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, Inc., New York

    Google Scholar 

  • Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements of living rat liver macrophages. Cell Biology International 21:685–696

    Article  Google Scholar 

  • Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal 78:520–535

    Google Scholar 

  • Schmidt FG, Hinner B, Sackmann E, Tang JX (2000) Viscoelastic properties of semiflexible filamentous bacteriophage fd. Physical Review E 62:5509–5517

    Google Scholar 

  • Schmidt FG, Ziemann F, Sackmann E (1996) Shear field mapping in actin networks by using magnetic tweezers. European Biophysics Journal 24:348–353

    Article  Google Scholar 

  • Schneider SW, Sritharan SW, Geibel JP, Oberleithner H, Jena B (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proceedings of the National Academy of Sciences of the United States of America 94:316–321

    Article  Google Scholar 

  • Schnurr B, Gittes F, MacKintosh FC, Schmidt CF (1997) Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30:7781–7792

    Article  Google Scholar 

  • Shroff SG, Saner DR, Lal R (1995) Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. American Journal of Physiology 269:C286–C289

    Google Scholar 

  • Sleep J, Wilson D, Simmons R, Gratzer W (1999) Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophysical Journal 77:3085–3095

    Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 3:47–57

    Article  MATH  MathSciNet  Google Scholar 

  • Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophysical Journal 63:1165–1169

    Google Scholar 

  • Tseng Y, Wirtz D (2001) Mechanics and multiple particle tracking microheterogeneity of α-actinin-crosslinked actin filament networks. Biophysical Journal 81:1643–1656

    Google Scholar 

  • Valberg PA (1984) Magnetometry of ingested particles in pulmonary macrophages. Science 224:513–516

    Google Scholar 

  • Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. Journal of Cell Biology 101:130–140

    Article  Google Scholar 

  • Valberg PA, Butler JP (1987) Magnetic particle motions within living cells: Physical theory and techniques. Biophysical Journal 52:537–550

    Google Scholar 

  • Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells: Measurement of cytoplasmic viscosity and motile activity. Biophysical Journal 52:551–561

    Google Scholar 

  • Valentine MT, Dewalt LE, Ou-Yang HD (1996) Forces on a colloidal particle in a polymer solution: a study using optical tweezers. Journal of Physics: Condensed Matter (U.K.) 8:9477–9482

    Article  Google Scholar 

  • Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T, Prud’homme RK, Beck M, Weitz DA (2001) Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Physical Review E 64:061506

    Article  Google Scholar 

  • van Megen W, Underwood SM, Pusey PN (1991) Nonergodicity parameters of colloidal glasses. Physical Review Letters 67:1586–1589

    Google Scholar 

  • Velegol D, Lanni F (2001) Cell Traction Forces on Soft Biomaterials. I. Microrheology of Type I Collagen Gels. Biophysical Journal 81:1786–1792

    Google Scholar 

  • Visscher K, Block SM (1998) Versatile optical traps with feedback control. Methods in Enzymology 298:460–479

    Article  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Google Scholar 

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophysical Journal 66:1281–1289

    Google Scholar 

  • Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochemistry and Cell Biology 73:327–335

    Article  Google Scholar 

  • Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional imaging of structural relaxation near the colloidal glass transition. Science 287:627–631

    Google Scholar 

  • Weitz DA, Pine DJ, (1993) Diffusing-wave spectroscopy. In: Brown W (ed) Dynamic Light Scattering. Oxford University Press, Oxford, pp 652–721

    Google Scholar 

  • Xue JZ, Pine DJ, Milner ST, Wu XL, Chaikin PM (1992) Non-ergodicity and light scattering from polymer gels. Physical Review A 46:6550–6563

    Article  Google Scholar 

  • Yagi K (1961) The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comparative Biochemistry and Physiology 3:73–91

    Article  Google Scholar 

  • Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophysical Journal 78:1736–1747

    Article  Google Scholar 

  • Zaner KS, Valberg PA (1989) Viscoelasticity of F-actin measured with magnetic particles. Journal of Cell Biology 109:2233–2243

    Article  Google Scholar 

  • Ziemann F, Rädler J, Sackmann E (1994) Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophysical Journal 66:2210–2216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gardel, M., Valentine, M., Weitz, D. (2005). Microrheology. In: Breuer, K.S. (eds) Microscale Diagnostic Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26449-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-26449-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23099-1

  • Online ISBN: 978-3-540-26449-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics