Skip to main content

Micro- and Nano-Scale Diagnostic Techniques for Thermometry and Thermal Imaging of Microelectronic and Data Storage Devices

  • Chapter
Microscale Diagnostic Techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almond, D.P., Nokrach, P., Stokes, E.W.R., Porch, A., Foulds, S.A.L., Wellhofer, F., Powell, J.R., and Abell, J.S., 2000, “Modulated optical reflectance characterization of high temperature superconducting thin film microwave devices,” Journal of Applied Physics, Vol. 87, No. 12, pp. 8628–8635.

    Article  Google Scholar 

  • Amerasekera, A., Van den Abeelen, W., Van Roozendaal, L., Hannemann, M., and Schofield, P., 1992, “ESD failure modes: characteristics mechanisms, and process influences,” IEEE Transactions on Electron Devices, Vol. 39, No. 2, pp. 430–436.

    Article  Google Scholar 

  • Arnold, E., Pein, H., and Herko, S.P., 1994, “Comparison of self-heating effects in bulksilicon and SOI high-voltage devices,” International Electron Devices Meeting 1994. Technical Digest, pp. 947, 813–816.

    Google Scholar 

  • Asheghi, M., 1999, “Thermal Transport Properties of Silicon Films,” Ph.D. Thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Asheghi, M., Leung, Y.K., Wong, S.S., and Goodson, K.E., 1997, “Phonon-boundary scattering in thin silicon layers,” Applied Physics Letters, Vol. 71, pp. 1798–1800.

    Article  Google Scholar 

  • Asheghi, M., Touzelbaev, M.N., Goodson, K.E., Leung, Y.K., and Wong, S.S., 1998, “Temperature dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” Journal of Heat Transfer, Vol. 120, pp. 30–36.

    Google Scholar 

  • Aszodi, G., Szabon, J., Janossy, I., and Szekely, V., 1981, “High resolution thermal mapping of microcircuits using nematic liquid crystals,” Solid-State Electronics, Vol. 24, No. 12, pp. 1127–1133.

    Google Scholar 

  • Banerjee, K., Ting, L., Cheung, N., and Hu, C.-M., 1996, “Impact of high current stress conditions on VLSI interconnect electromigration reliability evaluation,” Proceedings Thirteenth International VLSI Multilevel Interconnection Conference (VMIC), pp. 628, 289–294.

    Google Scholar 

  • Barton, D.L., 1994, “Fluorescent microthermographic imaging (IC failure analysis),” ISTFA’ 94. Proceedings of the 20th International Symposium for Testing and Failure Analysis, pp. 87–95.

    Google Scholar 

  • Barton, D.L., and Tangyunyong, P., 1996, “Fluorescent microthermal imaging-theory and methodology for achieving high thermal resolution images,” Microelectronic Engineering, Vol. 31, No. 1–4, pp. 271–279.

    Google Scholar 

  • Beck, F., 1986, “Liquid crystal thermography localizes faults on a chip,” Elektronik, Vol. 35, No. 13, pp. 82–84, 86–88, 91–92.

    Google Scholar 

  • Ben-Ami, U., Tessler, N., Ben-Ami, N., Nagar, R., Fish, G., Lieberman, K., Eisenstein, G., Lewis, A., Nielsen, J.M., and Moeller-Larsen, A., 1996, “Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Applied Physics Letters, Vol. 68, No. 17, pp. 2337–2339.

    Article  Google Scholar 

  • Bennett, G.A. and Briles, S.D., 1989, “Calibration procedure developed for IR surface-temperature measurements,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 690–695.

    Article  Google Scholar 

  • Bethe H. A., 1944, “Theory of diffraction by small holes,” Physical Review, No. 66, pp. 163–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Betzig, E. and Trautman, J.K., 1992, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, Vol. 257, No. 5067, pp. 189–195.

    Google Scholar 

  • Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S., and Kostelak, R.L., 1991, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, Vol. 251, No. 5000, pp. 1468–1470.

    Google Scholar 

  • Bison, P.G., Grinzato, E., Marinetti, S., and Muscio, A., 2000, “Diffusivity measurement of thick samples by thermography and heating-cooling technique,” Proc. SPIE, Vol. 4020, pp. 137–142.

    Google Scholar 

  • Blackburn, D.L., 1988, “A review of thermal characterization of power transistors,” Fourth Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, pp. 151–157.

    Google Scholar 

  • Boccara, A.C., Fournier, D., and Badoz, J., 1980, “Thermo-optical spectroscopy: detection by the mirage effect,” Applied Physics Letters, Vol. 36, No. 2, pp. 130–132.

    Article  Google Scholar 

  • Boeuf, F., Skotnicki, T., Monfray, S., Julien, C., Dutartre, D., Martins, J., Mazoyer, P., Palla, R., Tavel, B., f, Ribot, P., Sondergard, E., and Sanquer, M., 2001, “16 nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimization,” Electron Devices Meeting, IEDM’ 01 Technical Digest., International, pp.637–640.

    Google Scholar 

  • Boudreau, B.D., Raja, J., Hocken, R.J., Patterson, S.R., and Patten, J., 1997, “Thermal imaging with near-field microscopy,” Review of Scientific Instruments, Vol. 68, No. 8, pp. 3096–3098.

    Article  Google Scholar 

  • Brorson, S.D., Fujimoto, J.G., and Ippen, E.P., 1987, “Femtosecond electronic heat-transport dynamics in thin gold films,” Physical Review Letters, Vol. 59, No. 17, pp. 1962–1965.

    Article  Google Scholar 

  • Burgess, D., and Tan, P., 1984, “Improved sensitivity for hot spot detection using liquid crystals,” 22nd Annual Proceedings on Reliability Physics, pp.119–121.

    Google Scholar 

  • Busse, G., and Rosencwaig, A., 1980, “Subsurface imaging with photoacoustics,” Applied Physics Letters, Vol. 36, No. 10, pp. 815–816.

    Article  Google Scholar 

  • Cahill, D.G., 1998, “Heat transfer in dielectric lthin films and at solid-solid interfaces,” in Microscale Energy Transport, C.L. Tien et al., eds., Taylor & Francis, New York, NY, pp. 95–117.

    Google Scholar 

  • Cain, B.M., Goud, P.A., and Englefield, C.G., 1992, “Electrical measurement of the junction temperature of an RF power transistor,” IEEE Transactions on Instrumentation and Measurement, Vol. 41, No. 5, pp. 663–665.

    Article  Google Scholar 

  • Chen, F., Zhai, J., Stancil, D.D., and Schlesinger, T.E., 2001, “Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser,” Japanese Journal of Applied Physics, Part 1, Vol. 40, No. 3B, pp. 1794–1795.

    Google Scholar 

  • Chen, G., 1996, “Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,” Journal of Heat Transfer, Vol. 118, pp. 539–545.

    Google Scholar 

  • Claeys, W., Dilhaire, S., and Quintard, V., 1994, “Laser probing of thermal behavior of electronic components and its application in quality and reliability testing,” Microelectronic Engineering, Vol. 24, pp. 411–420.

    Article  Google Scholar 

  • Claeys, W., Dilhaire, S., Quintard, V., Dom, J.P., and Danto, Y., 1993, “Thermoreflectance optical test probe for the measurement of current-induced temperature changes in microelectronic components,” Quality and Reliability Engineering International, Vol. 9, No. 4, pp. 303–308.

    Google Scholar 

  • Deboy, G., Solkner, G., Wolfgang, E., and Claeys, W., 1996, “Absolute measurement of transient carrier concentration and temperature gradients in power semiconductor devices by internal IR-laser deflection,” Microelectronic Engineering, Vol. 31, No. 1–4, pp. 299–307.

    Google Scholar 

  • Doll, G.L., Eesley, G.L., Dresselhaus, M.S., Dresselhaus, G., Cassanho, A., Jenssen, H.P., and Gabbe, D.R., 1989, “Transient-thermoreflectance study of single-crystal lanthanum cuprate,” Physical Review B, Vol. 40, No. 13, pp. 9354–9357.

    Article  Google Scholar 

  • Durig, U., Pohl, D.W., and Rohner, F., 1986, “Near-field optical-scanning microscopy”, Journal of Applied Physics, Vol.59, No.10, pp. 3318–3327.

    Google Scholar 

  • Eckert, R., Freyland, J.M., Gersen, H., Heinzelmann, H., Schurmann, G., Noell, W., Staufer, U., and de Rooij, N.F., 2000, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Applied Physics Letters, Vol. 77, No. 23, pp. 3695–3697.

    Article  Google Scholar 

  • Eesley, G.L., 1986, “Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses,” Physical Review B, Vol. 33, No. 4, pp. 2144–2151.

    Article  Google Scholar 

  • Estreich, D.B., 1989, “A DC technique for determining GaAs MESFET thermal resistance,” IEEE Trans. Compon. Hybrids Manuf. Technol. (USA), IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 675–679.

    Google Scholar 

  • Fergason, J. L., “Liquid crystals in nondestructive testing,” Applied Optics, Vol. 7, No. 9, pp. 1729–1737.

    Google Scholar 

  • Fletcher, D.A., Crozier, K.B., Quate, C.F., Kino, K.S., Goodson, K.E., Simanovskii, D., and Palanker, D.V., 2000, “Near-field infrared imaging with a microfabricated solid immersion lens,” Applied Physics Letters, Vol. 77, pp. 2109–2111.

    Google Scholar 

  • Fletcher, D.A., Webb, N.U., Kino, G.S., Quate, C.F., and Goodson K.E., 2001, “Thermal Microscopy with a Microfabricated Solid Immersion Lens,” Proc. IEEE/LEOS International Conference on Optical MEMS, Okinawa, Japan.

    Google Scholar 

  • Fournier, D., and Boccara, A.C., 1987, Phatoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis (ed.), Elsevier North-Holland, New York.

    Google Scholar 

  • Furbock, C., Pogany, D., Litzenberger, M., Gornik, E., Seliger, N., Gossner, H., Muller-Lynch, T., Stecher, M., and Werner, W., 1999, “Interferometric temperature mapping during ESD stress and failure analysis of smart power technology ESD protection devices,” Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1999, pp. 241–250.

    Google Scholar 

  • Furbock, C., Seliger, N., Pogany, D., Litzenberger, M., Gornik, E., Stecher, M., Gosser, H., and Werner, W., 1998, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” International Electron Devices Meeting 1998. Technical Digest, pp. 1080, 691–694.

    Google Scholar 

  • Goodson, K.E. and Asheghi, M., 1997, “Near-Field optical thermometry,” Microscale Thermophysical Engineering, Vol. 1, pp. 225–235.

    Google Scholar 

  • Goodson, K.E. and Flik, M.I., 1994, “Solid-Layer thermal-conductivity measurement techniques,” Applied Mechanics Reviews, Vol. 47, pp. 101–112.

    Article  Google Scholar 

  • Goodson, K.E., Flik, M.I., Su, L.T., and Antoniadis, D.A., 1994, “Prediction and measurement of the thermal conductivity of amorphous dielectric layers,” Transactions of the ASME. Journal of Heat Transfer, Vol. 116, No. 2, pp. 317–324.

    Google Scholar 

  • Goodson, K.E., Flik, M.I., Su, L.T., and Antoniadis, D.A., 1995, “Prediction and measurement of temperature fields in silicon-on-insulator electronic circuits,” ASME Journal of Heat Transfer, Vol. 117, pp. 574–581.

    Google Scholar 

  • Goodson, K.E., Ju, Y.S., and Asheghi, M., 1998, “Thermal phenomena in semiconductor devices and interconnects,” in Microscale Energy Transport, C.L. Tien et al., eds., Taylor & Francis, New York, NY, pp. 229–293.

    Google Scholar 

  • Goodson, K.E., Käding, O.W., Rösler, M., and Zachai, R., 1995a, “Thermal conduction normal to diamond-silicon boundaries,” Applied Physics Letters, Vol. 66, pp. 3134–3136.

    Article  Google Scholar 

  • Goodson, K.E., Käding, O.W., Rösler, M., and Zachai, R., 1995b, “Experimental investigation of thermal conduction normal to diamond-Silicon boundaries,” Journal of Applied Physics, Vol. 77, pp. 385–392.

    Article  Google Scholar 

  • Goodson, K.E. and Ju, Y.S., 1999, “Heat conduction in novel electronic films,” in the Annual Review of Materials Science, E.N. Kaufmann et al., eds., Annual Reviews, Palo Alto, CA, Vol. 29, pp. 261–293.

    Google Scholar 

  • Gorlich, S., 1992, “Electron beam testing versus laser beam testing,” Microelectronic Engineering, Vol. 16, No. 1–4, pp. 349–366.

    Google Scholar 

  • Goto, K., Sato, T., and Mita, S., 1993, “Proposal of optical floppy disk head and preliminary spacing experiment between lensless head and disk,” Japanese Journal of Applied Physics, Vol. 32, No. 11B, pp. 5459–5460.

    Google Scholar 

  • Goto, N., 1998, “Plasma density control in a low-pressure RF resonant field,” Journal of Physics D (Applied Physics), Vol. 31, No. 4, pp. 428–433.

    Google Scholar 

  • Grober, R.D., Schoelkopf, R.J., and Prober, D.E, 1997, “Optical antenna: towards a unity efficiency near-field optical probe,” Applied Physics Letters, Vol. 70, No. 11, pp. 1354–1356.

    Article  Google Scholar 

  • Hammiche, A., Hourston, D.J., Pollock, H.M., Reading, M., and Song, M., 1996, “Scanning thermal microscopy: subsurface imaging, thermal mapping of polymer blends, and localized calorimetry,” Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures), Vol. 14, No. 2, pp. 1486–1491.

    Google Scholar 

  • Heisig, S., Rudow, O., and Oesterschulze, E., 2000, “Scanning near-field optical microscopy in the near-infrared region using light emitting cantilever probes,” Applied Physics Letters, Vol. 77, No. 8, pp. 1071–1073.

    Article  Google Scholar 

  • Hohlfeld J., Muller J.G., Wellershoff S.S., and Matthias E., 1997, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Applied Physics, Vol. B64, pp. 387–390.

    Google Scholar 

  • Inokawa, H., Fujiwara., A., and Takahashi, Y., 2001, “A multiple-valued logic with merged single-electron and MOS transistors”, Electron Devices Meeting, IEDM’ 01 Technical Digest., International, pp.147–150.

    Google Scholar 

  • Jomaah, J., Ghibaudo, G., and Balestra, F., 1995, “Analysis and modeling of self-heating effects in thin-film SOI MOSFETs as a function of temperature,” Solid-State Electronics, Vol. 38, No.3, pp. 615–618.

    Article  Google Scholar 

  • Ju, Y.S., Käding, O.W., Leung, Y.K., Wong, S.S., and Goodson, K.E., 1997, “Shorttimescale thermal mapping of semiconductor devices,” IEEE Electron Device Letters, Vol. 18, No. 5, pp. 169–171.

    Article  Google Scholar 

  • Ju, Y.S. and Goodson, K.E., 1999, “Phonon scattering in silicon films with thickness of order 100 nm,” Applied Physics Letters, Vol. 74, pp. 3005–3007.

    Article  Google Scholar 

  • Karns, D., Zhai, J., Herget, P., Song, H., Gamble, A., Stancil, D.D., Vijaya Kumar, B.V.K., and Schlesinger, T.E., 2000, “To 100 Gb/in/sup 2/ and beyond in magneto-optic recording,” Proc. SPIE, Vol. 4090, pp. 238–245.

    Google Scholar 

  • Katagiri, Y. and Ukita, H., 1989, “Improvement in signal-to-noise ratio of a longitudinally coupled cavity laser by internal facet reflectivity reduction,” Japanese Journal of Applied Physics, Vol. 28,Suppl. 28-3, pp. 177–182.

    Google Scholar 

  • Kolodner, p. and Tyson, J.A., 1983, “Remote thermal imaging with 0.7 µm spatial resolution using temperature-dependent fluorescent thin films,” Applied Physics Letters, Vol. 42, No. 1, pp. 117–119.

    Article  Google Scholar 

  • Kolodner, p. and Tyson, J.A., 1984, “Microscopic fluorescent imaging of surface temperature profiles with 0.01 degrees C resolution,” Applied Physics Letters, Vol. 40, No. 9, pp. 782–784.

    Google Scholar 

  • Kölzer, J. and Otto, J., 1991, “Electrical characterization of megabit DRAMs. 11. Internal testing,” IEEE Design & Test of Computers, Vol. 8, No. 4, pp. 39–51.

    Google Scholar 

  • Kölzer, J., Oesterschulze, E., and Deboy, G., 1996, “Thermal imaging and measurement techniques for electronic materials and devices,” Microelectronic Engineering, Vol. 31, pp. 251–270.

    Google Scholar 

  • Kölzer, J., Boit, C., Dallmann, A., Deboy, G., Otto, J., and Weinmann, D., 1992, “Quantitative emission microscopy,” Journal of Applied Physics, Vol. 71, No. 11, pp. 23–41.

    Google Scholar 

  • Kwok, T., Nguyen, T., Ho, P., and Yip, S., 1987, “Current density and temperature distributions in multilevel interconnection with studs and vias,” 25th Annual Proceedings: Reliability Physics pp. viii+279, 130–135.

    Google Scholar 

  • Labrunie, G. and Robert, J., 1973, “Transient behaviour of the electrically controlled birefringence in a nematic liquid crystal,” Journal of Applied Physics, Vol. 44, No. 11, pp. 4869–4874.

    Article  Google Scholar 

  • Langer, G., Hartmann, J., and Reichling, M., 1997, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Review of Scientific Instruments, Vol. 68, No.3, pp. 1510–1513.

    Article  Google Scholar 

  • Leung, Y.K., Suzuki, Y., Goodson, K.E., and Wong, S.S., 1995, “Self-heating effect in lateral DMOS on SOI,” Proceedings of the 7th International Symposium on Power Semiconductor Devices and Ics, pp. 136–140.

    Google Scholar 

  • Liu, W., and Yuksel, A., 1995, “Measurement of junction temperature of an AIGaAs/GaAs heterojunction bip transistor operating at large power densities,” IEEE Transaction Electron Device, Vol. 42, pp. 358–360.

    Google Scholar 

  • Maiti, B., Tobin, P.J., Hobbs, C., Hegde, R.I., Huang, F., O’Meara, D.L., Jovanovic, D., Mendicino, M., Chen, J., Connelly, D., Adetutu, O., Mogab, J., Candelaria, J., and La, L.B., 1998, “PVD TiN metal gate MOSFETs on bulk silicon and fully depleted silicon-on-insulator (FDSOI) substrates for deep sub-quarter micron CMOS technology,” Electron Devices Meeting, IEDM’ 98 Technical Digest., International, p.781–784.

    Google Scholar 

  • Majumdar, A. and Varesi, J., 1998, “Nanoscale temperature distributions measured by scanning Joule expansion microscopy,” Journal of Heat Transfer, Vol. 120, No. 2 pp. 297–305.

    Google Scholar 

  • Majumdar, A., Carrejo, J.P., and Lai, J., 1993, “Thermal imaging using the atomic force microscope,” Applied Physics Letters, Vol. 62, No. 20, pp. 2501–2503.

    Article  Google Scholar 

  • Majumdar, A., Lai, J., Chandrachood, M., Nakabeppu, O., Wu, Y., and Shi, Z., 1995, “Thermal imaging by atomic force microscopy using thermocouple cantilever probes,” Review of Scientific Instruments, Vol. 66, No. 6, pp. 3584–3592.

    Article  Google Scholar 

  • Majumdar, A., 1999, “Scanning thermal microscopy,” Annual Review of Materials Science, Vol. 29, pp. 505–585.

    Article  Google Scholar 

  • Majumdar, A., Mao, M., Perazzo, T., Zhao, Y., Kwon, O., Varesi, J., and Norton, P., 2000, “Infrared vision using uncooled optomechanical camera,” Proc. SPIE, Vol. 3948, pp. 74–79.

    Google Scholar 

  • Mansfield, S.M. and Kino, G.S., 1990, “Solid immersion microscope,” Applied Physics Letters, Vol. 57, No. 24, pp. 2615–2616.

    Article  Google Scholar 

  • Martel R., Wong, P., Chan, K., and Avouris, P., 2001, “Carbon nanotube field effect transistors for logic applications”, Electron Devices Meeting, IEDM’ 01 Technical Digest., International, pp.159–162.

    Google Scholar 

  • Mautry, p. G., and Trager, J., 1990, “Self-heating and temperature measurement in sub-µm-MOSFETs,” Proceedings of the IEEE International Conference on Microelectronic Test Structure, Vol. 3, pp. 221–226.

    Google Scholar 

  • Maywald, M., Pylkki, R.J., and Balk, L.J., 1994, “Imaging or local thermal and electrical conductivity with scanning force microscopy,” Scanning Microscopy, Vol. 8, No. 2, pp. 181–188.

    Google Scholar 

  • Maloney, T.J. and Khurana, N., 1985, “Transmission line pulsing techniques for circuit modeling of ESD phenomena,” Proceedings of EOS/ESD Symposium, pp. 49–54.

    Google Scholar 

  • Miklos, A., and Lorincz, A., 1988, “Transient thermoreflectance of thin metal films in the picosecond regime,” Journal of Applied Physics, Vol. 63, No. 7, pp. 2391–2395.

    Google Scholar 

  • Mitsuhashi, Y., Shimada, J., and Mitsutsuka, S., 1981, “Voltage change across the self-coupled semiconductor laser,” IEEE Journal of Quantum Electronics, Vol. QE-17, No. 7, pp. 1216–1225.

    Google Scholar 

  • Nakabeppu, O., Chandrachood, M., Wu, Y., Lai, J., and Majumdar, A., 1994, “Scanning thermal imaging microscopy using composite cantilever probes,” Applied Physics Letters, Vol. 66, No. 6, p.694–696.

    Google Scholar 

  • Naoyuki, T., Tetsuya, B., and Akira, O., 1997, “Development of a thermal diffusivity measurement system with a picosecond thermoreflectance technique,” High Temperatures-High Pressures, Vol. 29, pp. 59–66.

    Google Scholar 

  • Negus, K.J., Franklin, R.W., and Yovanovich, M.M., 1989, “Thermal modeling and experimental techniques for microwave bipolar devices,” IEEE Transaction Component Hybrids Manufacturing Technology. (USA), Vol. 12, No. 4, pp. 680–689.

    Google Scholar 

  • Nonnenmacher, M., and Wickramasinghe, H.K, 1992, “Scanning probe microscopy of thermal conductivity and subsurface properties,” Applied Physics Letters, Vol. 61, No. 2, pp. 168–170.

    Article  Google Scholar 

  • Novotny, L., and Pohl, D.W., 1995, “Light propagation in scanning near-field optical microscopy,” Photons and Local Probes. Proceedings of the NATO Advanced Research Workshop pp. 21–33.

    Google Scholar 

  • Oesterschulze, E., Stopka, M., and Kassing, R., 1994, “Photo-thermal characterization of solids and thin films by optical and scanning probe techniques,” Microelectronic Engineering, Vol. 24, No. 1–4, pp. 107–112.

    Google Scholar 

  • Oesterschulze, E., Hadjiiski, L., Stopka, M., and Kassing, R., 1995, “Laser interferometry and SThM-techniques for thermal characterization of thin films,” Materials Science Forum, Vol. 185–188, pp. 43–52.

    Google Scholar 

  • Oesterschulze, E., Stopka, M., Tochtrop-Mayr, M, Masseli, K., and Kassing, R., 1993, “Nondestructive evaluation of solids and deposited films by thermal-wave interferometry,” Applied Surface Science, Vol. 69, No. 1–4, pp. 65–68.

    Google Scholar 

  • Opsal, J., and Rosencwaig, A., 1985, “Thermal and plasma wave depth profiling in silicon,” Applied Physics Letters, Vol. 47, No. 5, pp. 498–500.

    Article  Google Scholar 

  • Paddock, C.A., and Eesley, G.L., 1986, “Transient thermoreflectance from thin metal films,” Journal of Applied Physics, Vol. 60, pp. 285–290.

    Article  Google Scholar 

  • Paesler, M.A., and Moyer, p. J., 1996, Near-Field Optics, Wiley, New York.

    Google Scholar 

  • Partovi, A., Peale, D., Wuttig, M., Murray, C.A., Zydzik, G., Hopkins, L., Baldwin, K., Hobson, W.S., Wynn, J., Lopata, J., Dhar, L., Chichester, R., and Yeh, J.H.-J., 1999, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Applied Physics Letters, Vol. 75, No. 11, pp. 1515–1517.

    Article  Google Scholar 

  • Peters, L., 1993, “SOI takes over where silicon leaves off,” Semiconductor International, Vol. 16, No. 3, pp. 48–51.

    Google Scholar 

  • Picart, B., and Minguez, S.D., 1992, “Test method in voltage contrast mode using liquid crystals (VLSI),” Microelectronics and Reliability, Vol. 32, No. 11, pp. 1605–1613.

    Article  Google Scholar 

  • Picart, B., and Petit, O., 1990, “Internal noncontact testing method using ferroelectric liquid crystals (IC failure analysis),” Microelectronic Engineering, Vol. 12, No. 1–4, pp. 149–156.

    Google Scholar 

  • Pylkki, R.J., Moyer, P.J., and West, P.E., 1994, “Scanning near-field optical microscopy and scanning thermal microscopy,” Japanese Journal of Applied Physics, Vol. 33, No. 6, pp. 3785–3790.

    Google Scholar 

  • Quintard, V., Deboy, G., Dilhaire, S., Lewis, D., Phan, T., and Claeys, W., 1996, “Laser beam thermography of circuits in the particular case of passivated semiconductors,” Microelectronic Engineering, Vol. 24, pp. 291–298.

    Google Scholar 

  • Radmacher, M., Hillner, A.P.E., and Hansma, P.K., 1994, “Scanning nearfield optical microscope using microfabricated probes,” Review of Scientific Instruments, Vol. 65, No. 8, pp. 2737–2738.

    Article  Google Scholar 

  • Raha, P., Ramaswamy, S., and Rosenbaum, E., 1997, “Heat flow analysis for EOS/ESD protection device design in SOI technology,” IEEE Transactions on Electron Devices, Vol. 44, pp. 464–471.

    Article  Google Scholar 

  • Ramo, S., Whinnery, J.R., and Van Duzer, T., 1984, Fields and waves in communication electronics, 2 nd edition”, Wiley; New York, NY, USA, pp. 817.

    Google Scholar 

  • Rantala, J., Lanhua, W., Kuo, P.K., Jaarinen, J., Luukkala, M., and Thomas, R.L., 1993, “Determination of thermal diffusivity of low-diffusivity materials using the mirage method with multiparameter fitting,” Journal of Applied Physics, Vol. 73, pp. 2714–2723.

    Article  Google Scholar 

  • Rausch, M., Kaltenbacher, M., Landes, H., and Lerch, R., 2001, “Numerical computation of the emitted noise of power transformers,” The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20, No. 2, pp. 636–648.

    MATH  Google Scholar 

  • Roberts D. M. and Gustafson, T.L., 1986, “Time modulation techniques for picosecond to microsecond pump-probe experiments using synchronously pumped dye lasers,” Optics Communications, Vol. 56, No. 5, pp. 334–338.

    Article  Google Scholar 

  • Roger, J.P., Lepoutre, F., Fournier, D., and Boccara, A.C., 1987, “Thermal diffusivity measurement of micron-thick semiconductor films by mirage detection,” Thin Solid Films, Vol. 155, No. 1, pp. 165–174.

    Article  Google Scholar 

  • Schoenlein, R.W., Lin W. Z., Fujimoto, J.G., and Eesley G.L., 1987, “Femtosecond studies of nonequilibrium electronic process in metals”, Physical Review Letters, Vol. 58, No. 16, pp. 2680–2683.

    Article  Google Scholar 

  • Skumanich, A., Dersch, H., Fathallah, M., and Amer, N.M., 1987, “A contactless method for investigating the thermal properties of thin films,” Applied Physics A (Solids and Surfaces), Vol. A43, No. 4, pp. 297–300.

    Google Scholar 

  • Sodnik, Z., Tiziani, Hj., Hess, P., and Pelzl, J. (eds.), 1988, Photoacoustic and photothermal phenomena III, Springer Verlag Berlin, pp. 400.

    Google Scholar 

  • Solkner, G., Wolfgang, E., and Bohm, C., 1994, “Advanced diagnosis techniques for submicron integrated circuits,” ESSCIRC’ 94. Twentieth European Solid-State Circuits Conference. Proceedings, pp. xvi+314, 11–17.

    Google Scholar 

  • Soref, R.A., and Bennett, B.R., 1987, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, Vol. QE-23, No. 1, pp. 123–129.

    Google Scholar 

  • Soref, R.A., and Rafuse, M.J., 1972, “Electrically controlled birefringence of thin nematic films (Light values),” Journal of Applied Physics, Vol. 453, No. 5, pp. 2029–2037.

    Google Scholar 

  • Su., L.T., Antoniadis, D.A., Arora, N.D., Doyle, B.S., and Krakauer, D.B., 1994, “SPICE model and parameters for fully-depleted SOI MOSFET’s including self-heating,” IEEE Electron Device Letters, Vol. 15, No. 10, pp. 374–376.

    Article  Google Scholar 

  • Sverdrup, P.G., Ju, Y.S., and Goodson, K.E., 1998, “Sub-continuum simulations of heat conduction in silicon-on-insulator transistors,” Journal of Heat Transfer, Vol. 120, pp. 30–36.

    Google Scholar 

  • Sze, S.M., 1998, “VLSI technology,” McGraw-Hill, New York.

    Google Scholar 

  • Tang, A.P.S., and Cheng, K.S., 2001, “Thermal X-ray pulses resulting from pulsar glitches,” Astrophysical Journal, Vol. 549, No. 2, p.1039–1049.

    Article  MathSciNet  Google Scholar 

  • Tenbroek, B.M., Redman-White, W., Lee, M.S.L., and Uren, M.J., 1996, “Electrical measurement of silicon film and oxide thicknesses in partially depleted SOI technologies,” Solid-State Electronics, Vol. 39, No. 7, pp. 1011–1014.

    Article  Google Scholar 

  • Terris, B.D., Mamin, H.J., and Rugar, D., 1996, “Near-field optical data storage,” Applied Physics Letters, Vol. 68, No. 2, pp. 141–143.

    Article  Google Scholar 

  • Toigo, J.W., 2000, “Avoiding the data crunch,” Scientific America, Vol. 282, No. 5, pp. 58–74.

    Google Scholar 

  • Touzelbaev, M.N. and Goodson, K.E, 2001, “Impact of experimental timescale and geometry on thin-film thermal property measurements,” International Journal of Thermophysics, Vol. 22, pp. 243–263.

    Article  Google Scholar 

  • Wallash, A.J., 2000, “ESD in magnetic recording: past, present and future,” www.wallash.com.

    Google Scholar 

  • Weaver, J.M.R., Walpita, L.M., and Wickramasinghe, H.K, 1989, “Optical absorption microscopy and spectroscopy with nanometer resolution,” Nature, Vol. 342, No. 6251, pp. 783–785.

    Article  Google Scholar 

  • Williams, C.C., and Wickramasinghe, H.K., 1986, “Scanning thermal profiler,” Applied Physics Letters, Vol. 49, No. 23, pp. 1587–1589.

    Article  Google Scholar 

  • Williams, C.C., and Wickramasinghe, H.K., 1988, “Thermal and photothermal imaging on a sub 100 nanometer scale,” Proc. SPIE, Vol. 897, pp. 129–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asheghi, M., Yang, Y. (2005). Micro- and Nano-Scale Diagnostic Techniques for Thermometry and Thermal Imaging of Microelectronic and Data Storage Devices. In: Breuer, K.S. (eds) Microscale Diagnostic Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26449-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-26449-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23099-1

  • Online ISBN: 978-3-540-26449-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics