Skip to main content

Machine Learning in Bioinformatics

  • Chapter
Bioinformatics Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeli, H. (1995) Machine learning: neural networks, genetic algorithms, and fuzzy systems. New York: Wiley.

    MATH  Google Scholar 

  • Adriaenssens, V., Baetsb, B.D., Goethalsa, P.L.M. and Pauwa, N.D. (2004) Fuzzy rule-based models for decision support in ecosystem management. Science of The Total Environment, vol. 319, pp 1–12.

    Article  Google Scholar 

  • Agatonovic-Kustrin, S., Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis 22 (5) 717–727.

    Google Scholar 

  • Azuaje, F. (2003) A computational evolutionary approach to evolving game strategy and cooperation. IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 33, pp 498–503.

    Google Scholar 

  • Baldi, P. and Brunak, S. (2001) “Bioinformatics The Machine Learning Approach”, The MIT Press.

    Google Scholar 

  • Baldi, P., Brunak, S., Frasconi, P., Pollastri, G. and Soda, G. (2000) Bidirectional IOHMMs and Recurrent Neural Networks for Protein Secondary Structure Prediction. In: Protein Sequence Analysis in the Genomic Era, R. Casadio and L. Masotti, Eds. CLUEB, Bologna, Italy.

    Google Scholar 

  • Baldi, P. and Brunak, S. (1998) Bioinformatics: the Machine Learning Approach. MIT Press.

    Google Scholar 

  • Barton, G.J. and Sternberg, M.J.E. (1987) A strategy for the rapid multiple alignment of protein sequences: Confidence levels from tertiary structure comparisons. Journal of Molecular Biology, vol. 198, pp 327–337.

    Article  Google Scholar 

  • Baxevanis, A.D., Ouellette, B.F.F. (2001) Bioinformatics: a practical guide to the analysis of genes and proteins, 2nd ed ed. New York: Wiley-Interscience.

    Google Scholar 

  • Benedetti, G. and Morosetti, S. (1995) A genetic algorithm to search for optimal and suboptimal RNA secondary structures. Biophysical Chemistry, vol. 55, pp 253–259.

    Article  Google Scholar 

  • Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Rapp, B.A., Wheeler DL (2002) GenBank. Nucleic Acids Res., vol. 28, pp 15–18.

    Google Scholar 

  • Bicciato, S., Pandin, M., Didone, G. and Bello, C.D. (2001) Analysis of an Associative Memory Neural Network for Pattern Identification in Gene Expression Data. 1st Workshop on Data Mining in Bioinformatics (in conjunction with 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining), San Francisco, CA, USA.

    Google Scholar 

  • Boegl, K., Adlassnig, K.P., Hayashi, Y., Rothenfluh, T.E. and Leitich, H. (2004) Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system. Artificial Intelligence in Medicine, vol. 30, pp 1–26.

    Article  Google Scholar 

  • Bohr, H., Bohr, J., Brunak, S., Cotteril, R.M., Fredholm, H., Lautrup, B. and Peterson, S.B. (1990) A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks. FEBS Letters, vol. 261, pp 43–46.

    Article  Google Scholar 

  • Brown, M.P.S., Grundy, W, N., et al. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences 97(1): 262–267

    Google Scholar 

  • Brusic, V., Rudy, G., Honeyman, M., Hammer, J. and Harrison, L. (1998a) Prediction of MHC class-II binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14, 121–130.

    Article  Google Scholar 

  • Brusic, V., Van Endert, P., Zeleznikow, J., Daniel, S., Hammer, J. and Petrovsky, N. (1998b) A Neural Network Model Approach to the Study of Human TAP Transporter. Silico biology 1, 0010.

    Google Scholar 

  • Brusic, V. and Zeleznikow, J. (1999) Knowledge discovery and data mining in biological databases. The Knowledge Engineering Review 14, 257–277.

    Article  Google Scholar 

  • Chellapilla, K. and Fogel, G.B. (1999) Multiple sequence alignment using evolutionary programming. Congress on Evolutionary Computation, pp 445–452.

    Google Scholar 

  • Chen, J-H., Le, S-Y. and Maizel, J.V. (2000) Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Res., vol. 28, pp 991–999.

    Google Scholar 

  • Coley, D.A. (1999) An introduction to genetic algorithms for scientists and engineers. Singapore: World Scientific.

    Google Scholar 

  • Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines (and other kernel-based learning methods), Cambridge University Press.

    Google Scholar 

  • Darwin, C. (1859) On the Origin of Species by means of natural selection: John Murray, London.

    Google Scholar 

  • Dopazo J and Carazo JM (1997) Phylogenetic reconstruction using a growing neural work that adopts the topology of a phylogenetic tree. Journal of Moleculer Evolution 44: 226–233.

    Google Scholar 

  • Fairchild, S., Pachter, R. and Perrin, R. (1995) Protein Structure Analysis and Prediction. The Mathematica Journal, vol. 5.

    Google Scholar 

  • Feng, D.F. and Doolitle, R.F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution, vol. 25, pp 351–360.

    Google Scholar 

  • Finlay, J. and Dix, A. (1996) Introduction to artificial intelligence: Taylor and Francis.

    Google Scholar 

  • Forrest, S. (1985) Documentation for prisonner dilemna and norms programs that use the genetic algorithm. University of Michigan, Technical report.

    Google Scholar 

  • Freeman, J.A. and Skapura, D.M. (1991) Neural networks: algorithms, applications, and programming techniques. Reading, Mass: Addison-Wesley.

    MATH  Google Scholar 

  • Fritzke, B (1994) Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Networks 7: 1141–1160.

    Article  Google Scholar 

  • Fu, L. (1999) Knowledge Discovery Based on Neural Networks. Communications of the ACM (CACM), vol. 42, pp 47–50.

    Article  Google Scholar 

  • Furey, T.S., Cristianini, N., et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10): 906–914.

    Article  Google Scholar 

  • Ghanea-Hercock, R. (2003) Applied evolutionary algorithms in Java. New York: Springer.

    MATH  Google Scholar 

  • Goldberg, D.E. (1989) Genetic algorithms in search, optimization, and machine learning: Addison-Wesley Pub. Co.

    Google Scholar 

  • Goldberg, D.E., Deb, K. (1991) A comparison of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, G.J.E. Rawlins, Edn. pp 69–93.

    Google Scholar 

  • Golub, T.R. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, vol. 286, pp 531–537.

    Article  Google Scholar 

  • Granzow, M., Berrar, D., et al. (2001) Tumour classification by gene expression profiling: comparison and validation of five clustering methods. ACM SIGBIO Newsletter 21(1): 16–22.

    Google Scholar 

  • Grefenstette, J.J., Baker, J.E. (1989) How genetic algorithms work: A critical look at implicit parallelism. Presented at Proc. 3rd Intl. Conf. Genetic Algorithms, San Mateo, CA.

    Google Scholar 

  • Gultyaev, A.P., Batenburg, F.H.D., Pleij, C.W.A. (1995) The Computer Simulation of RNA Folding Pathways using a Genetic Algorithm. Journal of Molecular Biology, vol. 250, pp 37–51.

    Article  Google Scholar 

  • Han, J. and Kamber, M. (2001) Data mining: concepts and techniques. San Francisco, Calif.: Morgan Kaufmann Publishers.

    Google Scholar 

  • Haykin, S. (1994) Neural networks: a comprehensive foundation. Upper Saddle River, N.J.: Prentice Hall.

    MATH  Google Scholar 

  • Herrero, J., Valencia, A. and Dopazo, J. (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics, vol. 17, pp 126–136.

    Article  Google Scholar 

  • Herrero, J., Valencia, A., et al. (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2): 126–136.

    Article  Google Scholar 

  • Holland, J.H. (1975) Adaptation in Natural and Artificial Systems: University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Isokawa, M., Wayama, M. and Shimizu, T. (1996) Multiple sequence alignment using a genetic algorithm. Genome Informatics, vol. 7, pp 176–177.

    Google Scholar 

  • Jaakkola, T., Diekhans, M., et al. (1999) Using the Fisher kernel method to detect remote protein homologies. 7th International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA.

    Google Scholar 

  • Jagota, A. (2000) Data analysis and classification for bioinformatics. California: Bay Press.

    Google Scholar 

  • Kalate, R.N., Tambe, S.S., Kulkarni, B.D. (2003) Artificial neural networks for prediction of mycobacterial promoter sequences. Comput Biol Chem, vol. 27, pp 555–564.

    Article  Google Scholar 

  • Kandel, A. (1992) Fuzzy expert systems. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Keedwell, E.C., Narayanan, A. (2003) Genetic algorithms for gene expression analysis. Presented at Applications of Evolutionary Computation: Proceedings of the 1st European Workshop on Evolutionary Bioinformatics (EvoBIO 2003).

    Google Scholar 

  • Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biological Cybernetics 43: 59–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Kohonen, T. (1990) The self-organizing map. Proceedings of IEEE 78(9): 1464–1480.

    Article  Google Scholar 

  • Kruse, R., Gebhardt, J., Palm, R. (1994) Foundations of fuzzy systems. Chichester, West Sussex, England; New York: Wiley & Sons.

    Google Scholar 

  • Kruse, R., Gebhardt, J., Palm, R. (1994) Fuzzy systems in computer science. Braunschweig: Vieweg.

    Google Scholar 

  • Kuonen, D. (2003) Challenges in Bioinformatics for Statistical Data Miners. Bulletin of the Swiss Statistical Society, vol. 46, pp 10–17.

    Google Scholar 

  • Li, L., Weinberg, C.R., Darden, T.A. and Pedersen, L.G. (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, vol. 17, pp 1131–1142.

    Google Scholar 

  • Lippman, R.P. (1987) An introduction to computing with neural nets. IEEE Acoustics, Speech, and Signal Processing Magazine 4(2): 4–22.

    MathSciNet  Google Scholar 

  • Mamdani, E.H. and Assilian, S. (1975) An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies, vol. 7, pp 1–13.

    MATH  Google Scholar 

  • Minsky, M. and Papert, S. (1969) Perceptrons: MIT Press, Cambridge.

    MATH  Google Scholar 

  • Müller, B. and Reinhardt, J. (1990) Neural networks: an introduction. Berlin; New York: Springer-Verlag.

    MATH  Google Scholar 

  • Narayanan, A., Keedwell, E., et al. (2003a) Artificial Intelligence Techniques for Bioinformatics. Applied Bioinformatics 1(4): 191–222.

    Google Scholar 

  • Narayanan, A., Keedwell, E., et al. (2003b) Single-Layer Artificial Neural Networks for Expression Analysis. Special Issue on Bioinformatics of Neurocomputing.

    Google Scholar 

  • Gene Narayanan, A., Keedwell, E.C. and Olsson, B. (2002) Artificial intelligence techniques for bioinformatics. Applied Bioinformatics, vol. 1, pp 191–222.

    Google Scholar 

  • Negnevitsky, M. (2002) Artificial Intelligence: A Guide to Intelligent Systems. New York: Addison Wesley.

    Google Scholar 

  • Ng, S-K. and Wong, L. (2004) Accomplishments and Challenges in Bioinformatics. In: IT pro, pp 12–18.

    Google Scholar 

  • Nguyen, H.D., Yoshihara, I., Yamamori, K. and Yasunage, M. (2002) A Parallel Hybrid Genetic Algorithm for Multiple Protein Sequence Alignment. Presented at Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, Piscataway, NJ.

    Google Scholar 

  • Nilsson, N.J. (1996) Introduction to Machine learning.

    Google Scholar 

  • Notredame, C. and Higgins, D.G. (1996) SAGA: Sequence alignment by genetic algorithm. Nucleic Acids Res., vol. 24, pp 1515–1524.

    Article  Google Scholar 

  • Ohno-Machado, L. and Vinterbo, S., Weber, G. (2002) Classification of gene expression data using fuzzy logic. Journal of Intelligent and Fuzzy Systems, vol. 12, pp 19–24.

    MATH  Google Scholar 

  • Qian, N. and Sejnowski, T.J. (1988) Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202: 865–884.

    Article  Google Scholar 

  • Qian, N. and Sejnowski, T.J. (1988) Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, vol. 202, pp 865–884.

    Article  Google Scholar 

  • Riis, S.K. and Krogh, A. (1996) Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J Comput Biol., vol. 3, pp 163–183.

    Article  Google Scholar 

  • Rosenblatt, F. (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, vol. 65, pp 386–408.

    MathSciNet  Google Scholar 

  • Rost, B. and Sander, C. (1993) Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, vol. 232, pp 584–599.

    Article  Google Scholar 

  • Saritas, I., Allahverdi, N. and Sert, I.U. (2003) A fuzzy expert system design for diagnosis of prostate cancer. Presented at International Conference on Computer Systems and Technologies, Sofia, Bulgaria.

    Google Scholar 

  • Sarkar, M. and Leong, T-Y. (2003) Characterization of medical time series using fuzzy similarity-based fractal dimensions. Artificial Intelligence in Medicine, vol. 27, pp 201–222.

    Article  Google Scholar 

  • Schneider, J., Peltri, G., Bitterlich, N., Neu, K., Velcovsky, H.G., Morr, H., Katz, N. and Eigenbrodt, E. (2003) Fuzzy logic-based tumor marker profiles including a new marker tumor M2-PK improved sensitivity to the detection of progression in lung cancer patients. Anticancer Res., vol. 23, pp 899–906, 2003.

    Google Scholar 

  • Seker, H., Odetayo, M.O., Petrovic, D. and Naguib, R.N.G. (2003) A fuzzy logic based-method for prognostic decision making in breast and prostate cancers. Information Technology in Biomedicine, IEEE Transactions, vol. 7, pp 114–122.

    Google Scholar 

  • Shapiro, B.A. and Navetta, J. (1994) A massively parallel genetic algorithm for RNA secondary structure prediction. Journal of Supercomputing, vol. 8, pp 195–207.

    MATH  Google Scholar 

  • Shapiro, B.A., Wu, JC., Bengali, D. and Potts, M.J. (2001) The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics, vol. 17, pp. 137–148.

    Article  Google Scholar 

  • Spicker, J.S., Wikman, F., Lu, M-L., Cordon-Cardo, C., Workman, C., Rntoft, T.F., Brunak, S. and Knudsen, S. (2002) Neural network predicts sequence of TP53 gene based on DNA chip. Bioinformatics, vol. 18, pp 1133–1134, 2002.

    Article  Google Scholar 

  • Stormo, G.D., Schneider, T.D., Gold, L. and Ehrenfeucht, A. (1982) Use of “Perceptron” algorithm to distinguish translatioanl initiation in E.coli. Nucleic Acids Research 10, 2997–3011.

    Google Scholar 

  • Synder, E.E. and Stormo, G.D. (1993) Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucleic Acids Res., vol. 21, pp 607–613.

    Google Scholar 

  • Synder, E.E. and Stormo, G.D. (1997) Identifying genes in genomic DNA sequences. In: DNA and Protein Sequence, M.J. Bishop and C.J. Rawlings, Edn. NewYork: Oxford University Press, pp 209–224.

    Google Scholar 

  • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S. and Golub, T.R. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Presented at Proc Natl Acad Sci, USA.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., vol. 22, pp 4673–4680.

    Google Scholar 

  • Tomida, S., Hanai, T., Honda, H. and Kobayashi, T. (2001) Gene Expression Analysis Using Fuzzy ART. Genome Informatics, vol. 12, pp 245–246.

    Google Scholar 

  • Torkkola, K., Mike G.R., Kaysser-Kranich, T. and Ma, C. (2001) Self-organizing maps in mining gene expression data. Information Sciences 139, 79–96.

    Article  MATH  Google Scholar 

  • Toronen, P., Kolehmainen, M., Wong, C. and Castren, E. (1999) Analysis of gene expression data using self-organizing maps. In: FEBS Letters, vol. 451, pp 142–146.

    Google Scholar 

  • Toronen, P., Kolehmainen, M., Wong, G. and Castrén, E. (1999) Analysis of gene expression data using self-organizing maps. Federation of European Biochemical Societies Letters 451, 142–146.

    Google Scholar 

  • Uberbacher, E.C. and Mural, R.J. (1991) Locating Protein Coding Regions in Human DNA Sequences Using a Multiple Sensor-Neural Network Approach. Presented at Proc.Natl. Acad. Sci., USA.

    Google Scholar 

  • Valentini, G. (2002). Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles. Artificial Intelligence in Medicine 26(3): 281–304.

    Article  Google Scholar 

  • Vapnik, V. (1996) The nature of statistical learning theory, Springer.

    Google Scholar 

  • Virant-Klun, I. and Virant, J. (1999) Fuzzy logic alternative for analysis in the biomedical sciences. Comput Biomed Res, vol. 32, pp 305–321.

    Article  Google Scholar 

  • Wang, J.T.L., Ma, Q., Shasha, D. and Wu, C.H. (2000) Application of neural networks to biological data mining: a case study in protein sequence classification. 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 20, 305–309.

    Google Scholar 

  • Wayama, M., Takahashi, K., Shimizu, T. (1995) An approach to amino acid sequence alignment using a genetic algorithm. Genome Informatics, vol. 6, pp 122–123.

    Google Scholar 

  • Westhead, D.R., Parish, J.H. and Twyman, R.M. (2002) “Bioinformatics”, Instant Notes in Bioinformatics, BIOS Scientific Publishing.

    Google Scholar 

  • Wong, L. (2000) Kleisli, a Funcitonal Query System. Journal of Functional Programming, vol. 10, pp 19–56.

    Article  Google Scholar 

  • Wong, L. (2002) Technologies for Integrating Biological Data. Briefings in Bioinformatics, vol. 3, pp 389–404, 2002.

    MATH  Google Scholar 

  • Woolf, P.J. and Wang, Y. (2000) A fuzzy logic approach to analyzing gene expression data. Physiological Genomics, vol. 3, pp 9–15.

    Google Scholar 

  • Wu, C. (1993) Classification Neural Networks For Rapid Sequence Annotation And Automated Database Organization. Computer & Chemistry, vol. 17, pp 219–227,.

    Google Scholar 

  • Wu, C. (1996) Gene Classification Artificial Neural System. In: Methods In Enzymology: Computer Methods for Macromolecular Sequence Analysis, vol. 266, R. Doolittle, Ed, pp 71–88.

    Google Scholar 

  • Wu, C., Berry M, Shivakumar S, McLarty J (1995) Neural Networks For Full-Scale Protein Sequence Classification: Sequence Encoding With Singular Value Decomposition. Machine Learning, vol. 21.

    Google Scholar 

  • Wu, C. and Shivakumar, S. (1994) Back-Propagation And Counter-Propagation Neural Networks For Phylogenetic Classification Of Ribosomal RNA Sequences. Nucleic Acids Research, vol. 22, pp 4291–4299.

    Google Scholar 

  • Wu, C., Whitson, G., McLarty, J., Ermongkonchai, A. and Chang, T. (1992) Protein Classification Artificial Neural System. Protein Science, vol. 1, pp 667–677.

    Article  Google Scholar 

  • Wu, C.H. (1997) Artificial neural networks for molecular sequence analysis. Computers and Chemistry 21(4): 237–256.

    Article  Google Scholar 

  • Wu, C.H., Berry, M.W., et al. (1993) Neural Networks for Molecular Sequence Classification. Proceeding of 1st ISMB.

    Google Scholar 

  • Wu, C.H., Berry, M, W., et al. (1995) Neural Networks for Full-Scale Protein Sequence Classification: Sequence Encoding with Singular Value Decomposition. Machine Learning 21(1-2): 177–193.

    Article  Google Scholar 

  • Wu, C.H., McLarty, J.W. (2000) Neural Networks and Genome Informatics. Meth Comp Biol Biochem 1.

    Google Scholar 

  • Wu, J.C. and Shapiro, B.A. (1999) A Boltzmann filter improves RNA folding pathway in a massively parallel genetic algorithm. Journal of Biomolecular Structure and Dynamics, vol. 17, pp 581–595.

    Google Scholar 

  • Zhang, C. and Wong, A.K.C. (1997) A genetic algorithm for multiple molecular sequence alignment. Computer Application for Bioscience, vol. 13, pp 565–581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Hiedelberg

About this chapter

Cite this chapter

Prompramote, S., Chen, Y., Chen, YP.P. (2005). Machine Learning in Bioinformatics. In: Chen, YP.P. (eds) Bioinformatics Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26888-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-26888-X_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20873-0

  • Online ISBN: 978-3-540-26888-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics