Skip to main content

Systems Biotechnology: a New Paradigm in Biotechnology Development

  • Chapter
Bioinformatics Technologies

Conclusion

Modeling and simulation of cellular process are invaluable for organizing and integrating available metabolic knowledge and designing the right experiments. Simulation of biological systems through metabolic modeling can provide crucial information concerning cellular behavior under various genetic and environmental conditions, thus suggesting various strategies for the development of efficient biotechnology processes. The current predictive power of biological simulation is, however, limited by insufficient knowledge of global regulation and kinetic information, and thus in silico design-based process development might seem to be unrealistic. However, considering the fact that the currently widespread simulation of electrical circuits and aircraft design had also been criticized for similar reasons in their emerging days, it is expected that increased accuracy and validity of biological simulation will be achieved in the near future; the accumulation of large amounts of global scale data from genomics advances in simulation methods will make this true.

Systems biotechnology is the way biotechnology should be developed and practiced from now hence. Upstream (strain, cell, and organism development), midstream (fermentation and other unit operations) and down-stream processes of biotechnology will benefit significantly from adapting systems biotechnological approaches. The cases of mid- to down-stream bioprocesses resemble the systems engineering approach that has been successfully applied in chemical industries (the core subject of chemical engineering). Now it is time to adapt systems biotechnological approaches 6 Systems Biotechnology: a New Paradigm in Biotechnology Development 171 for developing upstream processes such as strain development, which will ultimately lead to successful biotechnology development when combined with systems engineering of mid- to down-stream processes. This is Systems Biotechnology!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, P.J., Berry, J., Loader, J.A., Tyson, K.L., Craggs, G., Smith, P., De Belin, J., Steers, G., Pezzella, F., Sachsenmeir, K.F., Stamps, A.C., Herath, A., Sim, E., O’Hare, M.J., Harris, A, L. and Terrett. J.A. (2003) Arylamine Nacetyltransferase-1 is highly expressed in breast cancers and conveys enhanced growth and resistance to Etoposide in vitro. Mol. Cancer Res. 1: 826–835.

    Google Scholar 

  • Alur, R., Belta, C., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H. and Schug, J. (2002) Modeling and analyzing biomolecular networks. Computing Sci. Eng. 4: 20–31.

    Google Scholar 

  • Amrolia, P., Sullivan, S.G., Stern, A. and Munday, R. (1989) Toxicity of aromatic thiols in the human red blood cell. J. Appl. Toxicol. 9: 113–118.

    Google Scholar 

  • Berkum, N.L. and Holstege, F.C. (2001) DNA microarrays: raising the profile. Curr. Opin. Biotechnol. 12: 48–52.

    Google Scholar 

  • Brent, R. (2000) Genomic biology. Cell 100: 169–183.

    Article  Google Scholar 

  • Carlson, J.M. and Doyle, J. (2002) Complexity and robustness. Proc. Natl. Acad. Sci. USA 99: 2538–2545.

    Article  Google Scholar 

  • Choe, L.H., Chen, W. and Lee, K.H. (1999) Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. Electrophoresis 20: 798–805.

    Article  Google Scholar 

  • Choi, J.H., Lee, S.J., Lee, S.J. and Lee, S.Y. (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl. Environ. Microbiol. 69: 4737–4742.

    Article  Google Scholar 

  • Cornish-Bowden, A, and Hofmeyr, J.H. (1991) METAMODEL-A program for modeling and control analysis of metabolic pathways on the IBM PC and compatibles. Comput. Appl. Biosci. 7: 89–93.

    Google Scholar 

  • Dauner, M. and Sauer, U. (2001) Stoichiometric growth model for riboflavinproducing Bacillus subtilis. Biotechnol. Bioeng. 76: 132–143.

    Google Scholar 

  • Delneri, D., Brancia, F.L. and Oliver, S.G. (2001) Towards a truly integrative biology through the functional genomics of yeast. Curr. Opin. Biotechnol. 12: 87–91.

    Article  Google Scholar 

  • Demmelmair, H., Sauerwald, T., Koletzko, B. and Richter, T. (1997) New insights into lipid and fatty acid metabolism via stable isotopes. Eur. J. Pediatr. 156: S70–S74.

    Google Scholar 

  • Devos, D. and Valencia, A. (2001) Intrinsic errors in genome annotation. Trends Gen. 17: 429–431.

    Google Scholar 

  • Dongre, A.R., Opiteck, G., Cosand, W.L. and Hefta, S.A. (2001) Proteomics in the post-genome age. Biopolymers 60: 206–211.

    Article  Google Scholar 

  • Drummelsmith, J., Brochu, V., Girard, I., Messier, N. and Ouellette, M. (2003) Proteome mapping of the protozoan parasite leishmania and application to the study of drug targets and resistance mechanisms. Mol. Cell Proteomics. 2: 146–155.

    Google Scholar 

  • Edwards, J.S. and Palsson, B.O. (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics. 1: 1–10.

    Article  Google Scholar 

  • Ehlde, M. and Zacchi, G. (1995) MIST: a user-friendly metabolic simulator. Comput. Appl. Biosci. 11: 201–207.

    Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.

    Article  Google Scholar 

  • Endy, D. and Brent, R. (2001) Modeling cellular behavior. Nature 409: 391–395.

    Article  Google Scholar 

  • Erasmus, D.J., van der Merwe, G.K. and van Vuuren, H.J. (2003) Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 3: 375–399.

    Google Scholar 

  • Eymann, C., Homuth, G., Scharf, C. and Hecker, M. (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184: 2500–2520.

    Article  Google Scholar 

  • Fell, D.A. (1997) Understanding the control of metabolism. Portland Press.

    Google Scholar 

  • Fraser, C.M., Eisen, J.A. and Salzberg, S.L. (2000) Microbial genome sequencing. Nature 406: 799–803.

    Google Scholar 

  • Fukuda, K. and Takagi, T. (2001) Knowledge representation of signal transduction pathways. Bioinformatics 17: 829–837.

    Article  Google Scholar 

  • Glassbrook, N., Beecher, C. and Ryals, J. (2000) Metabolic profiling on the right path. Nat. Biotechnol. 18: 1142–1143.

    Article  Google Scholar 

  • Gohar, M., Okstad, O.A., Gilois, N., Sanchis, V., Kolsto, A.B. and Lereclus, D. (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics. 2: 784–791.

    Article  Google Scholar 

  • Goryanin, I., Hodgman, T.C. and Selkov, E. (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15: 749–758.

    Article  Google Scholar 

  • de Graaf, A.A., Eggeling, L. and Sahm, H. (2001) Metabolic engineering for Llysine production by Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 73: 9–29.

    Google Scholar 

  • Han, M.J., Jeong, K.J., Yoo, J.S. and Lee, S.Y. (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl. Environ. Microbiol. 69: 5772–5781.

    Article  Google Scholar 

  • Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100: 57–70.

    Article  Google Scholar 

  • Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W. (1999) From molecular to modular cell biology. Nature 402: C47–C52.

    Article  Google Scholar 

  • Hatzimanikatis, V., Lee, K.H. and Bailey, J.E. (1999) A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnol. Bioeng. 65: 631–637.

    Article  Google Scholar 

  • Hogenesch, J.B., Ching, K.A., Batalov, S., Su, A, I., Walker, J.R., Zhou, Y., Kay, S.A., Schultz, P.G., Cooke and M.P. (2001) A comparison of the celera and ensembl predicted gene sets reveals little overlap in novel genes. Cell 106: 413–415.

    Article  Google Scholar 

  • Hong, S.H., Park, S.J., Moon, S.Y., Park, J.P. and Lee, S.Y. (2003) In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 83: 854–863.

    Article  Google Scholar 

  • Hua, Q., Yang, C., Baba, T., Mori, H. and Shimizu, K. (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185: 7053–7067.

    Article  Google Scholar 

  • Hughes, T.R., Marton, M.J., Jones, A.R., Roberts. C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A, M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M. and Friend, S.H. (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126..

    Article  Google Scholar 

  • Ideker, T., Galitski, T. and Hood, L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343–372.

    Article  Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabasi, A.L. (2000) The large-scale organization of metabolic networks. Nature 407: 651–654.

    Google Scholar 

  • Jin, S., Ye, K. and Shimizu, K. (1997) Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production. J. Biotechnol. 54: 161–174.

    Article  Google Scholar 

  • Jordan, J.D., Landau, E.M. and Iyengar, R. (2000) Signaling networks: the origins of cellular multitasking. Cell 103: 193–200.

    Article  Google Scholar 

  • Karp, P.D. (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16: 269–285.

    Article  MathSciNet  Google Scholar 

  • Kitano, H. (2002a) Computational systems biology. Nature 420: 206–210.

    Article  Google Scholar 

  • Kitano, H. (2002b) Systems biology: a brief overview. Science 295: 1662–1664.

    Article  Google Scholar 

  • Klamt, S., Stelling, J., Ginkel, M. and Gilles, E.D. (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19: 261–269.

    Article  Google Scholar 

  • Kolpakov, F.A., Ananko EA, Kolesov GB, Kolchanov NA (1998) GeneNet: a gene network database and its automated visualization. Bioinformatics 14: 529–537.

    Article  Google Scholar 

  • Lee, D.Y., Yun, H., Park, S. and Lee, S.Y. (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19: 2144–2146.

    Google Scholar 

  • Lee, J.H., Lee, D.E., Lee, B.U. and Kim, H.S. (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J. Bacteriol. 185: 5442–5451.

    Google Scholar 

  • Lee, K.H. (2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol. 19: 217–222.

    Article  Google Scholar 

  • Lee, S.Y. (1996) High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98–105.

    Google Scholar 

  • Lee, S.Y., Papoutsakis ET (1999) Metabolic Engineering. Marcel Dekker.

    Google Scholar 

  • Leerkes, M.R., Caballero, O.L., Mackay, A., Torloni, H., O’Hare, M.J., Simpson, A.J. and de Souza, S.J. (2002) In silico comparison of the transcriptome derived from purified normal breast cells and breast tumor cell lines reveals candidate upregulated genes in breast tumor cells. Genomics 79: 257–265.

    Article  Google Scholar 

  • Leung, Y.F., Lam, D.S., Pang, C.P. (2001) In silico biology: observation, modeling, hypothesis and verification. Trends Genet. 17: 622–623.

    Article  Google Scholar 

  • Li, J., Adrian, T.E. (1999) A factor from pancreatic and colonic cancer cells stimulates glucose uptake and lactate production in myoblasts. Biochem. Biophys. Res. Commun. 260: 626–633.

    Article  Google Scholar 

  • Loew, L.M. and Schaff, J.C. (2001) The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19: 401–406.

    Article  Google Scholar 

  • Marton, M.J., DeRisi, J.L., Bennett, H.A., Iyer, V.R., Meyer, M.R., Roberts, C.J., Stoughton, R., Burchard, J., Slade, D., Dai, H., Bassett DE, Jr., Hartwell, L.H., Brown, P.O. and Friend, S.H. (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 4: 1293–1301.

    Article  Google Scholar 

  • Matthews, D.E., Pesola, G., Campbell, R.G. (1990) Effect of epinephrine on amino acid and energy metabolism in humans. Am. J. Physiol. 258: E948–956.

    Google Scholar 

  • McAtee, C.P., Hoffman, P.S. and Berg, D.E. (2001) Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques. Proteomics. 1: 516–521.

    Article  Google Scholar 

  • Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi3. Trends Biochem. Sci. 22: 361–363.

    Article  Google Scholar 

  • Nelson, K.E., Paulsen, I.T., Heidelberg, J.F. and Fraser, C.M. (2000) Status of genome projects for nonpathogenic bacterial and archaea. Nat. Biotechnol. 18: 1049–1054.

    Article  Google Scholar 

  • Nielsen, J. and Olsson, L. (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Research 2: 175–181.

    Article  Google Scholar 

  • Owens, G.E., Keri, R.A., Nilson and J.H. (2002) Ovulatory surges of human CG prevent hormone-induced granulosa cell tumor formation leading to the identification of tumor-associated changes in the transcriptome. Mol. Endocrinol. 16: 1230–1242.

    Article  Google Scholar 

  • Phair, R.D., Misteli, T. (2001) Kinetic modeling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2: 898–907.

    Article  Google Scholar 

  • Phelps, T.J., Palumbo, A.V., Beliaev, A.S. (2002) Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr. Opin. Biotechnol. 13: 20–24.

    Article  Google Scholar 

  • Poland, J., Schadendorf, D., Lage, H., Schnolzer, M., Celis, J.E. and Sinha, P. (2002) Study of therapy resistance in cancer cells with functional proteome analysis. Clin. Chem. Lab. Med. 40: 221–234.

    Article  Google Scholar 

  • Primiano, T., Baig, M., Maliyekkel, A., Chang, B.D., Fellars, S., Sadhu, J., Axenovich, S.A., Holzmayer, T.A. and Roninson, I.B. (2003) Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell. 4: 41–53.

    Google Scholar 

  • Regan, L. and Gregory, M. (1995) Flux analysis of microbial metabolic pathways using a visual programming environment. J. Biotechnol. 42: 151–161.

    Article  Google Scholar 

  • Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer, M.R., Bennett, H.A., He, Y.D., Dai, H., Walker, W.L., Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880.

    Google Scholar 

  • Robinson, M., Jiang, P., Cui, J., Li, J., Wang, Y., Swaroop, M., Madore, S., Lawrence, T.S. and Sun, Y. (2003) Global genechip profiling to identify genes responsive to p53-induced growth arrest and apoptosis in human lung carcinoma cells. Cancer Biol. Ther. 2: 406–415.

    Google Scholar 

  • Ryu, D.D.Y. and Nam, D.H. (2000) Recent progress in biomolecular engineering. Biotechnol. Prog. 16: 2–16.

    Google Scholar 

  • Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, S.M., Krauthammer, M., Kaplan, S.H., Kra, P., Russo, J.J. and Friedman, C. (2000) A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16: 1120–1128.

    Article  Google Scholar 

  • Sahm, H., Eggeling, L. and de Graaf, A.A. (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol. Chem. 381: 899–910.

    Article  Google Scholar 

  • Sauer, U., Hatzimanikatis, V., Hohmann, H.P., Manneberg, M., van Loon, A.P. and Bailey, J.E. (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62: 3687–3696.

    Google Scholar 

  • Sauro, H.M. (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comput. Applic. Biosci. 9: 441–450.

    Google Scholar 

  • Schuster, S., Fell, D.A. and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18: 326–332.

    Article  Google Scholar 

  • Seeber, F. (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3: 99–109.

    Google Scholar 

  • Sherlock, G. (2000) Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12: 201–205.

    Article  Google Scholar 

  • Shimizu, T., Shima, K., Yoshino, K., Yonezawa, K., Shimizu, T. and Hayashi, H. (2002) Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 184: 2587–2594.

    Article  Google Scholar 

  • Simpson, T.W., Follstad, B.D. and Stephanopoulos, G. (1999) Analysis of the pathway structure of metabolic networks. J. Biotechnol. 71: 207–223.

    Article  Google Scholar 

  • Somogyi, R. and Sniegoski, C.A. (1996) Modeling the complexity of genetic networks: Understanding multistage and pleiotropic regulation. Complexity 1: 45–63.

    MathSciNet  Google Scholar 

  • Steele, D., Kertsburg, A and Soukup, G.A. (2003) Engineered catalytic RNA and DNA: new biochemical tools for drug discovery and design. Am. J. Pharmacogenomics 3: 131–144.

    Google Scholar 

  • Stein, R.C. and Zvelebil, M.J. (2002) The application of 2D gel-based proteomics methods to the study of breast cancer. J. Mammary Gland Biol. Neoplasia. 7: 385–393.

    Article  Google Scholar 

  • Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. and Gilles, E.D. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190–193.

    Article  Google Scholar 

  • Stephanopoulos, G. and Vallino, J.J. (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675–1681.

    Google Scholar 

  • Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19: 205–210.

    Article  Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor, M.G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V, A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., Zhu, X. (2001) The sequence of human genome. Science 291: 1304–1351.

    Article  Google Scholar 

  • Verrills, N.M., Kavallaris, M. (2003) Drug resistance mechanisms in cancer cells: a proteomics perspective. Curr. Opin. Mol. Ther. 5: 258–265.

    Google Scholar 

  • Voit, E.O. (2000) Computational analysis of biochemical systems. Cambridge Univ. Press.

    Google Scholar 

  • Waghray, A., Schober, M., Feroze, F., Yao, F., Virgin, J. and Chen, Y.Q. (2001) Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res. 61: 4283–4286.

    Google Scholar 

  • Wiechert, W. (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol. 94: 37–63.

    Article  Google Scholar 

  • Williams, K.L. (1999) Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis 20: 678–688.

    Google Scholar 

  • Wittmann, C. and Heinzle, E. (2001) Application of MALDI-TOF MS to lysineproducing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur. J. Biochem. 268: 2441–2455.

    Article  Google Scholar 

  • Wu, W., Hu, W. and Kavanagh, J.J. (2002) Proteomics in cancer research. Int. J. Gynecol Cancer. 12: 409–423.

    Article  Google Scholar 

  • Yale, J. and Bohnert, H.J. (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276: 15996–16007.

    Article  Google Scholar 

  • Ye, R.W., Tao, W., Bedzyk, L., Young, T., Chen, M. and Li, L. (2000) Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol. 182: 4458–4465.

    Google Scholar 

  • Yoon, S.H., Han, M.J., Lee, S.Y., Jeong, K.J., Yoo and J.S. (2002) Combined transcriptome and proteome analysis of Escherichia coli during the high cell density culture. Biotechnol. Bioeng. 81: 753–767.

    Google Scholar 

  • Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T. and Fujita, Y. (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29: 683–692.

    Google Scholar 

  • Zhang, S., Day, I.N. and Ye, S. (2001) Microarray analysis of nicotine-induced changes in gene expression in endothelial cells. Physiol. Genomics. 5: 187–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Hiedelberg

About this chapter

Cite this chapter

Lee, S.Y., Hong, S.H., Lee, D.Y., Kim, T.Y. (2005). Systems Biotechnology: a New Paradigm in Biotechnology Development. In: Chen, YP.P. (eds) Bioinformatics Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26888-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26888-X_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20873-0

  • Online ISBN: 978-3-540-26888-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics