Skip to main content

30 Years of FCT: Status and Directions

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Summary

A somewhat historical perspective of the use of FCT for fluid dynamics is given. The particular emphasis is on large-scale blast problems. A comparison with other high-resolution CFD solvers is included to highlight the differences between them, as well as the relative cost. Results from test runs, as well as several relevant production runs are shown. Outstanding issues that deserve further investigation are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baum, J.D. and R. Löhner-Numerical Simulation of Shock Interaction with a Modern Main Battlefield Tank; AIAA-91-1666 (1991).

    Google Scholar 

  2. Baum, J.D., H. Luo and R. Löhner-Numerical Simulation of a Blast Inside a Boeing 747; AIAA-93-3091 (1993).

    Google Scholar 

  3. Baum, J.D. and R. Löhner-Numerical Simulation of Shock-Box Interaction Using an Adaptive Finite Element Scheme; AIAA J. 32,4, 682–692 (1994).

    Article  ADS  Google Scholar 

  4. Baum,.D., H. Luo and R. Löhner-Numerical Simulation of Blast in the World Trade Center; AIAA-95-0085 (1995).

    Google Scholar 

  5. Baum, J.D., H. Luo and R. Löhner-Validation of a New ALE, Adaptive Unstructured Moving Body Methodology for Multi-Store Ejection Simulations; AIAA-95-1792 (1995).

    Google Scholar 

  6. Baum, J.D., H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman-A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck; AIAA-96-0795 (1996).

    Google Scholar 

  7. Billey, V., J. Périaux, P. Perrier, B. Stoufflet-2-D and 3-D Euler Computations with Finite Element Methods in Aerodynamic; International Conference on Hypersonic Problems, Saint-Etienne, Jan. 13–17 (1986).

    Google Scholar 

  8. Book, D.L., J.P. Boris and K. Hain-Flux-corrected Transport. II. Generalizations of the Method; J. Comp. Phys. 18, 248–283 (1975).

    Article  ADS  Google Scholar 

  9. Boris, J.P. and D.L. Book-Flux-corrected Transport. I. SHASTA, a Transport Algorithm that works; J. Comp. Phys. 11, 38–69 (1973).

    Article  ADS  Google Scholar 

  10. Boris, J.P. and D.L. Book-Flux-corrected Transport. III. Minimal-Error FCT Algorithms; J. Comp. Phys. 20, 397–431 (1976).

    Article  ADS  Google Scholar 

  11. Colella, P.-Multidimensional Upwind Methods for Hyperbolic Conservation Laws; LBL-17023, Preprint (1983).

    Google Scholar 

  12. deFainchtein, R, S.T. Zalesak, R. Löhner and D.S. Spicer-Finite Element Simulation of a Turbulent MHD System: Comparison to a Pseudo-Spectral Simulation; Comp. Phys. Comm. 86, 25–39 (1995).

    Article  ADS  Google Scholar 

  13. Fry, M.A. and D.L. Book-Adaptation of Flux-Corrected Transport Codes for Modelling Dusty Flows; Proc. 14th Int. Symp. on Shock Tubes and Waves (R.D. Archer and B.E. Milton eds.), New South Wales University Press (1983).

    Google Scholar 

  14. Fyfe, D.E., J.H. Gardner, M. Picone and M.A. Fry-Fast Three-Dimensional Flux-Corrected Transport Code for Highly Resolved Compressible Flow Calculations; Springer Lecture Notes in Physics 218, 230–234, Springer Verlag (1985).

    Article  ADS  Google Scholar 

  15. Godunov, S.K.-Finite Difference Method for Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics; Mat. Sb. 47, 271–306 (1959).

    MATH  MathSciNet  Google Scholar 

  16. Goodman, J.B. and R.J. LeVeque-On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws; Math. Comp. 45, 15–21 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  17. Harten, A., and G. Zwaas-Self-Adjusting Hybrid Schemes for Shock Computations; J. Comp. Phys. 6, 568–583 (1972).

    Article  ADS  Google Scholar 

  18. Harten, A.-High Resolution Schemes for Hyperbolic Conservation Laws; J. Comp. Phys. 49, 357–393 (1983).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Hirsch, C.-Numerical Computation of Internal and External Flow; J. Wiley & Sons (1991).

    Google Scholar 

  20. Jameson, A., W. Schmidt and E. Turkel-Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes; AIAA-81-1259 (1981).

    Google Scholar 

  21. Kuzmin, D.-Positive Finite Element Schemes Based on the Flux-Corrected Transport Procedure; pp. 887–888 in Computational Fluid and Solid Mechanics, Elsevier (2001).

    Google Scholar 

  22. Kuzmin, D. and S. Turek-Explicit and Implicit High-Resolution Finite Element Schemes Based on the Flux-Corrected-Transport Algorithm; pp. 133–143 in Proc. 4th European Conf. Num. Math. and Advanced Appl. ( F. Brezzi et al. eds.), Springer-Verlag, (2002)

    Google Scholar 

  23. Kuzmin, D. and S. Turek-Flux Correction Tools for Finite Elements; J. Comp. Phys. 175, 525–558 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kuzmin, D., M. Möller and S. Turek-Multidimensional FEM-FCT Schemes for Arbitrary Time-Stepping; Int. J. Numer. Meth. Fluids 42, 265–295 (2003).

    Article  MATH  Google Scholar 

  25. van Leer, B.-Towards the Ultimate Conservative Scheme. II. Monotonicity and Conservation Combined in a Second Order Scheme; J. Comp. Phys. 14, 361–370 (1974).

    Article  ADS  MATH  Google Scholar 

  26. Löhner, R., K. Morgan and J. Peraire-A Simple Extension to Multidimensional Problems of the Artificial Viscosity due to Lapidus; Comm. Appl. Num. Meth. 1, 141–147 (1985).

    Article  MATH  Google Scholar 

  27. Löhner, R., K. Morgan, J. Peraire and M. Vahdati-Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations; Int. J. Num. Meth. Fluids 7, 1093–1109 (1987).

    Article  MATH  Google Scholar 

  28. Löhner, R., K. Morgan, M. Vahdati, J.P. Boris and D.L. Book-FEM-FCT: Combining Unstructured Grids with High Resolution; Comm. Appl. Num. Meth. 4, 717–730 (1988).

    Article  MATH  Google Scholar 

  29. Löhner, R and J.D. Baum-Adaptive H-Refinement on 3-D Unstructured Grids for Transient Problems; Int. J. Num. Meth. Fluids 14, 1407–1419 (1992).

    Article  MATH  Google Scholar 

  30. Löhner, R., Chi Yang, J.D. Baum, H. Luo, D. Pelessone and C. Charman-The Numerical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies; Int. J. Num. Meth. Fluids 31, 113–120 (1999).

    Article  MATH  Google Scholar 

  31. Löhner, R.-Applied CFD Techniques; J. Wiley & Sons (2001).

    Google Scholar 

  32. Löhner, R., J.D. Baum, E.L. Mestreau, D. Sharov, Ch. Charman and D. Pelessone-Adaptive Embedded Unstructured Grid Methods; AIAA-03-1116 (2003).

    Google Scholar 

  33. Luo, H., J.D. Baum, R. Löhner and J. Cabello-Adaptive Edge-Based Finite Element Schemes for the Euler and Navier-Stokes Equations; AIAA-93-0336 (1993).

    Google Scholar 

  34. Luo, H., J.D. Baum and R. Löhner-Edge-Based Finite Element Scheme for the Euler Equations; AIAA J. 32,6, 1183–1190 (1994).

    Article  ADS  MATH  Google Scholar 

  35. Mavriplis, D.-Three-Dimensional Unstructured Multigrid for the Euler Equations; AIAA-91-1549-CP (1991).

    Google Scholar 

  36. Mestreau, E., R. Löhner and S. Aita-TGV Tunnel-Entry Simulations Using a Finite Element Code with Automatic Remeshing; AIAA-93-0890 (1993).

    Google Scholar 

  37. Osher, S. and F. Solomon-Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws; Math. Comp. 38, 339–374 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  38. Parrott, A.K. and M.A. Christie-FCT Applied to the 2-D Finite Element Solution of Tracer Transport by Single Phase Flow in a Porous Medium; Proc. ICFD-Conf. Num. Meth. in Fluid Dyn. (K.W. Morton and Baines eds.), Reading, Academic Press (1986).

    Google Scholar 

  39. Patnaik, G., R.H. Guirguis, J.P. Boris and E.S. Oran-A Barely Implicit Correction for Flux-Corrected Transport; J. Comp. Phys. (1988).

    Google Scholar 

  40. Patnaik, G., K. Kailasanath, K.J. Laskey and E.S. Oran-Detailed Numerical Simulations of Cellular Flames; Proc. 22nd Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, (1989).

    Google Scholar 

  41. Peraire, J., J. Peiro and K. Morgan-A Three-Dimensional Finite Element Multigrid Solver for the Euler Equations; AIAA-92-0449 (1992).

    Google Scholar 

  42. Rice, D.L., M.E. Giltrud, J.D. Baum, H. Luo and E. Mestreau-Experimental and Numerical Investigation of Shock Diffraction About Blast Walls; Proc. 16th Int. Symp. Military Aspects of Blast and Shocks, Keble College, Oxford, UK, September 10–15 (2000).

    Google Scholar 

  43. Riemann, G.F.B.-Über die Fortpflanzung ebener Luftwellen von Endlicher Schwingungweite; Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 8 (1860).

    Google Scholar 

  44. Roe, P.L.-Approximate Riemann Solvers, Parameter Vectors and Difference Schemes; J. Comp. Phys. 43, 357–372 (1981).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Sivier, S., E. Loth, J.D. Baum and R. Löhner-Vorticity Produced by Shock Wave Diffraction; Shock Waves 2, 31–41 (1992).

    Article  ADS  Google Scholar 

  46. Scannapieco, A.J. and S. L. Ossakow-Nonlinear Equatorial Spread F; Geophys. Res. Lett. 3,451 (1976).

    Google Scholar 

  47. Sod, G.-A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws; J. Comp. Phys. 27, 1–31 (1978).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Sweby, P.K.-High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws; SIAM J. Num. Anal. 21, 995–1011 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Weatherill, N.P., O. Hassan, M.J. Marchant and D.L. Marcum-Adaptive Inviscid Flow Solutions for Aerospace Geometries on Efficiently Generated Unstructured Tetrahedral Meshes; AIAA-93-3390 (1993).

    Google Scholar 

  50. Whitaker, D.L., B. Grossman and R. Löhner-Two-Dimensional Euler Computations on a Triangular Mesh Using an Upwind, Finite-Volume Scheme; AIAA-89-0365 (1989).

    Google Scholar 

  51. Woodward, P. and P. Colella-The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks; J. Comp. Phys. 54, 115–173 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zalesak, S.T.-Fully Multidimensional Flux-Corrected Transport Algorithm for Fluids; J. Comp. Phys. 31, 335–362 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Zalesak, S.T. and R. Löhner-Minimizing Numerical Dissipation in Modern Shock Capturing Schemes; pp. 1205–1211 in Proc. 7th Int. Conf. Finite Elements in Flow Problems (T.J. Chung and G. Karr eds.), Huntsville, AL (1989).

    Google Scholar 

  54. Zhmakin, A.I. and A.A. Fursenko-A Class of Monotonic Shock-Capturing Difference Schemes; NRL Memo. Rep. 4567, (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löhner, R., Baum, J.D. (2005). 30 Years of FCT: Status and Directions. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27206-2_5

Download citation

Publish with us

Policies and ethics