Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1108 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.8.7 Literatur

  • Andersson M, Lewan L (1988) Early increase in diadenosine tetraphosphate in regenerating rat liver. Exp Cell Res 175: 414–418

    Article  PubMed  CAS  Google Scholar 

  • Baker JC, Ames BN (1988) Alterations in levels of 5′-adenyl dinucleotides following DNA damage in normal human fibroblasts and fibroblasts derived from patients with xeroderma pigmentosum. Mutat Res 208: 87–93

    PubMed  CAS  Google Scholar 

  • Baker JC, Jacobson MK (1986) Alteration of adenyl dinucleotide metabolism by environmental stress. Proc Natl Acad Sci USA 83: 2350–2352

    Article  PubMed  CAS  Google Scholar 

  • Baker JC, Smale ST, Tjian R, Ames BN (1987) Inhibition of simian virus 40 DNA replication in vitro by poly(ADP-ribosyl)ated diadenosine tetraphosphate. J Biol Chem 262: 14855–14858

    PubMed  CAS  Google Scholar 

  • Baril E, Bonin P, Burstein D, Mara K, Zamecnik P (1983) Resolution of the diadenosine 5′,5‴-P1,P4-tetraphosphate binding subunit from a multiprotein form of HeLa cell DNA polymerase alpha. Proc Natl Acad Sci USA 80: 4931–4935

    Article  PubMed  CAS  Google Scholar 

  • Barnes LD, Garrison PN, Siprashvili Z et al. (1996) Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5‴-P1,P3-triphosphate hydrolase. Biochemistry 35: 11529–11535

    Article  PubMed  CAS  Google Scholar 

  • Baxi MD, McLennan AG, Vishwanatha JK (1994) Characterization of the HeLa cell DNA polymerase alpha-associated Ap4A binding protein by photoaffinity labeling. Biochemistry 33: 14601–14607

    Article  PubMed  CAS  Google Scholar 

  • Bessman M, Frick D, O’Handley S (1996) The MutT proteins or “nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271: 25059–25062

    Article  PubMed  CAS  Google Scholar 

  • Bianchi BR, Lynch KJ, Touma E et al. (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Bochner BR, Lee PC, Wilson SW, Cutler CW, Ames BN (1984) AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26: 959–969

    Article  PubMed  CAS  Google Scholar 

  • Boehm S (2003) Signaling via nucleotide receptors in the sympathetic nervous system. Drug News Perspect 16: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov Y, Wildman S, Clements M, King B, Burnstock G (1998) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol 124: 428–430

    Article  PubMed  CAS  Google Scholar 

  • Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil 16Suppl 1: 34–38

    Article  PubMed  Google Scholar 

  • Boulpaep E (2003) Integrated control of the cardiovascular system. Saunders, Philadelphia

    Google Scholar 

  • Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA (2001) Extracellular nucleotide signaling: A mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone 28: 507–512

    Article  PubMed  CAS  Google Scholar 

  • Brandts B, Brandts A, Wellner-Kienitz MC, Zidek W, Schlüter H, Pott L (1998) Non-receptor-mediated activation of IK(ATP) and inhibition of IK(ACh) by diadenosine polyphosphates in guinea-pig atrial myocytes. J Physiol 512: 407–420

    Article  PubMed  CAS  Google Scholar 

  • Brenner C, Bieganowski P, Pace HC, Huebner K (1999) The histidine triad superfamily of nucleotide-binding proteins. J Cell Physiol 181: 179–187

    Article  PubMed  CAS  Google Scholar 

  • Brevet A, Coste H, Fromant M, Plateau P, Blanquet S (1987) Yeast diadenosine 5′,5″,-P1,P4-tetraphosphate alpha.beta-phosphorylase behaves as a dinucleoside tetraphosphate synthetase. Biochemistry 26: 4763–4768

    Article  PubMed  CAS  Google Scholar 

  • Brevet A, Chen J, Leveque F, Plateau P, Blanquet S (1989) In vivo synthesis of adenylylated bis(5′-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases. Proc Natl Acad Sci USA 86: 8275–8279

    Article  PubMed  CAS  Google Scholar 

  • Brossmer R, Harrison MJ, Goody RS (1975) Proceedings: alpha, omega-diadenosine polyphosphates, a new class of substances, and ADP-methylester inhibit platelet aggregation and the release reaction. Thromb Diath Haemorrh 34: 553

    PubMed  CAS  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S et al. (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1995) Noradrenaline and ATP: Cotransmitters and neuromodulators. J Physiol Pharmacol 46: 365–384

    PubMed  CAS  Google Scholar 

  • Cartwright JL, Britton P, Minnick MF, McLennan AG (1999) The IalA invasion gene of Bartonella bacilliformis encodes a (de)nucleoside polyphosphate hydrolase of the MutT motif family and has homologs in other invasive bacteria. Biochem Biophys Res Commun 256: 474–479

    Article  PubMed  CAS  Google Scholar 

  • Cartwright JL, McLennan AG (1999) The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5′,5‴-P1,P6-hexaphosphate (Ap6A) hydrolase member of the MutT motif (Nudix hydrolase) family. J Biol Chem 274: 8604–8610

    Article  PubMed  CAS  Google Scholar 

  • Castillo CJ, Moro MA, Del Valle M, Sillero A, Garcia AG, Sillero MA (1992) Diadenosine tetraphosphate is co-released with ATP and catecholamines from bovine adrenal medulla. J Neurochem 59: 723–732

    PubMed  CAS  Google Scholar 

  • Chambers JK, Macdonald LE, Sarau HM et al. (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275: 10767–10771

    Article  PubMed  CAS  Google Scholar 

  • Chan CM, Unwin RJ, Burnstock G (1998) Potential functional roles of extracellular ATP in kidney and urinary tract. Exp Nephrol 6: 200–207

    Article  PubMed  CAS  Google Scholar 

  • Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4: 160–165

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri AR, Khan IA, Prasad V, Robinson AK, Luduena RF, Barnes LD (1999) The tumor suppressor protein Fhit. A novel interaction with tubulin. J Biol Chem 274: 24378–24382

    Article  PubMed  CAS  Google Scholar 

  • Chrousos G, Gold P (1988) The concept of stress and its historical development. Adv Exp Med Biol 245: 3–7

    Google Scholar 

  • Cinkilic O, King BF, Giet M van der, Schlüter H, Zidek W, Burnstock G (2001) Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety. J Pharmacol Exp Ther 299: 131–136

    PubMed  CAS  Google Scholar 

  • Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, Brown RS (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301: 592–595

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Robaye B, Boeynaems J (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128: 1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Coste H, Brevet A, Plateau P, Blanquet S (1987) Non-adenylylated bis(5′-nucleosidyl) tetraphosphates occur in Saccharomyces cerevisiae and in Escherichia coli and accumulate upon temperature shift or exposure to cadmium. J Biol Chem 262: 12096–12103

    PubMed  CAS  Google Scholar 

  • Di Virgilio F, Chiozzi P, Ferrari D et al. (2001) Nucleotide receptors: An emerging family of regulatory molecules in blood cells. Blood 97: 587–600

    Article  PubMed  Google Scholar 

  • Donnelly LE, Rogers DF (2003) Therapy for chronic obstructive pulmonary disease in the 21st century. Drugs 63: 1973–1998

    Article  PubMed  CAS  Google Scholar 

  • Drygalski A von, Ogilvie A (2000) Ecto-diadenosine 5′,5′,-P1,P4-tetraphosphate (Ap4A)-hydrolase is expressed as an ectoenzyme in a variety of mammalian and human cells and adds new aspects to the turnover of Ap4A. Biofactors 11: 179–187

    Google Scholar 

  • Dubyak GR (2000) Purinergic signaling at immunological synapses. J Auton Nerv Syst 81: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Dubyak GR (2003) Knock-out mice reveal tissue-specific roles of P2Y receptor subtypes in different epithelia. Mol Pharmacol 63: 773–776

    Article  PubMed  CAS  Google Scholar 

  • Edgecombe M, Craddock HS, Smith DC, McLennan AG, Fisher MJ (1997) Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules. Biochem J 323: 451–456

    PubMed  CAS  Google Scholar 

  • Edgecombe M, McLennan AG, Fisher MJ (1999) Diadenosine polyphosphates and the control of cyclic AMP concentrations in isolated rat liver cells. FEBS Lett 457: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Evans SW, Linnekin D, Farrar WL (1990) Interleukin-2 regulation of diadenosine 5′,5″-p1,p4-tetraphosphate (Ap4A) levels and DNA synthesis in cloned murine T lymphocytes. Eur Cytokine Netw 1: 229–233

    PubMed  CAS  Google Scholar 

  • Filippov A, Webb T, Barnard E, Brown D (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126: 1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Flodgaard H, Klenow H (1982) Abundant amounts of diadenosine 5′,5‴-P1,P4-tetraphosphate are present and releasable, but metabolically inactive, in human platelets. Biochem J 208: 737–742

    PubMed  CAS  Google Scholar 

  • Fontes R, Gunther Sillero MA, Sillero A (1999) Acyl-CoA synthetase catalyzes the synthesis of diadenosine hexaphosphate (Ap6 A). Biochimie 81: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Fredholm B (1997) Purines and Neutrophil Leukocytes. Gen Pharmac 28: 345–350

    CAS  Google Scholar 

  • Garrison P, Barnes L (1992) Determination of dinucleoside polyphosphates. CRC Press, Boca Raton, FL

    Google Scholar 

  • Gasmi L, McLennan AG, Edwards SW (1994) Priming of the respiratory burst of human neutrophils by the diadenosine polyphosphates, AP4A and AP3A: role of intracellular calcium. Biochem Biophys Res Commun 202: 218–224

    Article  PubMed  CAS  Google Scholar 

  • Gasmi L, McLennan AG, Edwards SW (1996) The diadenosine polyphosphates Ap3A and Ap4A and adenosine triphosphate interact with granulocyte-macrophage colony-stimulating factor to delay neutrophil apoptosis: Implications for neutrophil: Platelet interactions during inflammation. Blood 87: 3442–3449

    PubMed  CAS  Google Scholar 

  • Gasmi L, McLennan AG, Edwards SW (1997) Diadenosine polyphosphates induce intracellular Ca2+ mobilization in human neutrophils via a pertussis toxin sensitive G-protein. Immunology 90: 154–159

    Article  PubMed  CAS  Google Scholar 

  • Giet M van der, Khattab M, Borgel J, Schlüter H, Zidek W (1997) Differential effects of diadenosine phosphates on purinoceptors in the rat isolated perfused kidney. Br J Pharmacol 120: 1453–1460

    PubMed  Google Scholar 

  • Giet M van der, Westhoff T, Cinkilic O, Jankowski J, Schlüter H, Zidek W, Tepel M (2001) The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P(2X)-receptors in the isolated perfused rat kidney. Br J Pharmacol 132: 467–474

    Article  PubMed  Google Scholar 

  • Gilson G, Ebel JP, Remy P (1988) Is Ap4A involved in DNA repair processes? Exp Cell Res 177: 143–153

    Article  PubMed  CAS  Google Scholar 

  • Goerlich O, Foeckler R, Holler E (1982) Mechanism of synthesis of adenosine(5′)tetraphospho(5′)adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem 126: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Green AK, Cobbold PH, Dixon CJ (1995) Cytosolic free Ca2+oscillations induced by diadenosine 5′,5‴-P1,P3-triphosphate and diadenosine 5′,5‴-P1,P4-tetraphosphate in single rat hepatocytes are indistinguishable from those induced by ADP and ATP respectively. Biochem J 310: 629–635

    PubMed  CAS  Google Scholar 

  • Grummt F (1979) Diadenosine tetraphosphate triggers in vitro DNA replication. Cold Spring Harb Symp Quant Biol 43: 649–653

    PubMed  CAS  Google Scholar 

  • Günther Sillero M, Cameselle J (1992) Interactions of dinucleoside polyphosphates with enzymes and other proteins. CRC Press, Boca Raton, FL

    Google Scholar 

  • Guranowski A (2000) Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther 87: 117–139

    Article  PubMed  CAS  Google Scholar 

  • Guranowski A, Just G, Holler E, Jakubowski H (1988) Synthesis of diadenosine 5′,5′-P1,P4-tetraphosphate (AppppA) from adenosine 5′-phosphosulfate and adenosine 5′-triphosphate catalyzed by yeast AppppA phosphorylase. Biochemistry 27: 2959–2964

    Article  PubMed  CAS  Google Scholar 

  • Guranowski A, Sillero MA, Sillero A (1990) Firefly luciferase synthesizes P1,P4-bis(5′-adenosyl)tetraphosphate (Ap4A) and other dinucleoside polyphosphates. FEBS Lett 271: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Hankin S, Matthew N, Thorne H, McLennan AG (1995) Diadenosine 5′,5‴-P1,P4-tetraphosphate hydrolase is present in human erythrocytes, leukocytes and platelets. Int J Biochem Cell Biol 27: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Hankin S, Wintero AK, McLennan AG (1997) Molecular cloning of diadenosine tetraphosphatase from pig small intestinal mucosa and identification of sequence blocks common to diadenosine polyphosphate hydrolases and phosphorylases. Int J Biochem Cell Biol 29: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Brossmer R (1975) Inhibition of platelet aggregation and the platelet release reaction by alpha, omega diadenosine polyphosphates. FEBS Lett 54: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich S, Tepel M, Schlüter H, Harrach B, Zidek W (1995) Regulation of rat mesangial cell growth by diadenosine phosphates. J Clin Invest 95: 2862–2867

    PubMed  CAS  Google Scholar 

  • Hilderman RH (1983) Characterization of a homogeneous complex of arginyl-and lysyl-tRNA synthetase: zinc and adenosine 5′-phosphate dependent synthesis of diadenosine 5′,5′-P1,P4-tetraphosphate. Biochemistry 22: 4353–4357

    Article  PubMed  CAS  Google Scholar 

  • Ho WL, Chang JW, Tseng RC, Chen JT, Chen CY, Jou YS, Wang YC (2002) Loss of heterozygosity at loci of candidate tumor suppressor genes in microdissected primary non-small cell lung cancer. Cancer Detect Prev 26: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Huebner K, Croce CM (2003) Cancer and the FRA3B/FHIT fragile locus: it’s a HIT. Br J Cancer 88: 1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Ingram SW, Barnes LD (2000) Disruption and overexpression of the Schizosaccharomyces pombe aph1 gene and the effects on intracellular diadenosine 5′,5′-P1,P4-tetra-phosphate (Ap4A), ATP and ADP concentrations. Biochem J 350: 663–669

    Article  PubMed  CAS  Google Scholar 

  • Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe Aps1, a diadenosine 5′,5‴-P1,P6-hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38: 3649–3655

    Article  PubMed  CAS  Google Scholar 

  • Inscho EW (1996) Purinoceptor-mediated regulation of the renal microvasculature. J Auton Pharmacol 16: 385–388

    PubMed  CAS  Google Scholar 

  • Ishii H, Dumon KR, Vecchione A, Fong LY, Baffa R, Huebner K, Croce CM (2001) Potential cancer therapy with the fragile histidine triad gene: Review of the preclinical studies. JAMA 286: 2441–2449

    Article  PubMed  CAS  Google Scholar 

  • Ishii H, Ozawa K, Furukawa Y (2003) Alteration of the fragile histidine triad gene early in carcinogenesis: An update. J Exp Ther Oncol 3: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Iwata K, Haruki S, Kimura T (1995) High-performance liquid chromatographic determination of diadenosine 5′,5‴-p1,p4-tetraphosphate with precolumn fluorescence derivatization and its application to metabolism study in whole blood. J Chromatogr B Biomed Appl 667: 339–343

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski H (1983) Synthesis of diadenosine 5′,5‴-P1,P4-tetraphosphate and related compounds by plant (Lupinus luteus) seryl-tRNA and phenylalanyl-tRNA synthetases. Acta Biochim Pol 30: 51–69

    PubMed  CAS  Google Scholar 

  • Jakubowski H, Guranowski A (1983) Enzymes hydrolyzing ApppA and/or AppppA in higher plants. Purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds. J Biol Chem 258: 9982–9989

    PubMed  CAS  Google Scholar 

  • Jankowski J, Tepel M, Giet M van der et al. (1999) Identification and characterization of P(1), P(7)-Di(adenosine-5′)-heptaphosphate from human platelets. J Biol Chem 274:23926–23931

    Article  PubMed  CAS  Google Scholar 

  • Jankowski J, Hagemann J, Tepel M et al. (2001) Dinucleotides as growth-promoting extracellular mediators. Presence of dinucleoside diphosphates Ap2A, Ap2G, and Gp2G in releasable granules of platelets. J Biol Chem 276:8904–8909

    Article  PubMed  CAS  Google Scholar 

  • Jankowski J, Jankowski V, Laufer U et al. (2003 a) Identification and quantification of diadenosine polyphosphate concentrations in human plasma. Arterioscler Thromb Vasc Biol 23: 1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Jankowski J, Jankowski V, Seibt B, Henning L, Zidek W, Schlüter H (2003 b) Identification of dinucleoside polyphosphates in adrenal glands. Biochem Biophys Res Commun 304: 365–370

    Article  PubMed  CAS  Google Scholar 

  • Janssens R, Paindavoine P, Parmentier M, Boeynaems J (1999) Human P2Y2 receptor polymorphism: identification and pharmacological characterization of two allelic variants. Br J Pharmacol 127: 709–716

    Article  PubMed  CAS  Google Scholar 

  • Jimenez AI, Castro E, Delicado EG, Miras-Portugal MT (2002) Specific diadenosine pentaphosphate receptor coupled to extracellular regulated kinases in cerebellar astrocytes. J Neurochem 83: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Johnston DJ, Hart CA, McLennan AG (1990) Variation in intracellular P1P4-bis(5′-adenosyl) tetraphosphate (Ap4A) in virus-infected cells. Biochem J 268: 791–793

    PubMed  CAS  Google Scholar 

  • Johnstone DB, Farr SB (1991) AppppA binds to several proteins in Escherichia coli, including the heat shock and oxidative stress proteins DnaK, GroEL, E89, C45 and C40. Embo J 10: 3897–3904

    PubMed  CAS  Google Scholar 

  • Jovanovic A, Alekseev AE, Terzic A (1997) Intracellular diadenosine polyphosphates: A novel family of inhibitory ligands of the ATP-sensitive K+ channel. Biochem Pharmacol 54: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic S, Jovanovic A (2001) Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels. Biosci Rep 21: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic A, Jovanovic S, Mays DC, Lipsky JJ, Terzic A (1998) Diadenosine 5′,5″-P1,P5-pentaphosphate harbors the properties of a signaling molecule in the heart. FEBS Lett 423: 314–318

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA (2000) ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor. Mol Pharmacol 57: 926–931

    PubMed  CAS  Google Scholar 

  • Keppens S (1996) Effects of diadenosine triphosphate and diadenosine tetraphosphate on rat liver cells. Differences and similarities with ADP and ATP. Biochem Pharmacol 52: 441–445

    Article  PubMed  CAS  Google Scholar 

  • King B, Townsend-Nicholson A, Wildman S, Thomas T, Spyer K, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20:4871–4877

    PubMed  CAS  Google Scholar 

  • Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336: 513–523

    PubMed  CAS  Google Scholar 

  • la Sala A, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2003) Alerting and tuning the immune response by extracellular nucleotides. J Leukoc Biol 73:339–343

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Watt WC, Stutts MJ, Boucher RC, Harden TK (1995) Pharmacological selectivity of the cloned human P2U-purinoceptor: Potent activation by diadenosine tetraphosphate. Br J Pharmacol 116: 1619–1627

    PubMed  CAS  Google Scholar 

  • Lee PC, Bochner BR, Ames BN (1983) AppppA, heat-shock stress, and cell oxidation. Proc Natl Acad Sci USA 80:7496–7500

    Article  PubMed  CAS  Google Scholar 

  • Leventhal PS, Bertics PJ (1991) Kinetic analysis of protein kinase C: Product and dead-end inhibition studies using ADP, poly(L-lysine), nonhydrolyzable ATP analogues, and diadenosine oligophosphates. Biochemistry 30: 1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Levy BT, Sorge LK, Drum CC, Maness PF (1983) Differential inhibition of cellular and viral pp60src kinase by P1,P4-di(adenosine-5′)tetraphosphate. Mol Cell Biol 3:1718–1723

    PubMed  CAS  Google Scholar 

  • Lewis CJ, Gitterman DP, Schlüter H, Evans RJ (2000) Effects of diadenosine polyphosphates (Ap(n)As) and adenosine polyphospho guanosines (Ap(n)Gs) on rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 129:124–130

    Article  PubMed  CAS  Google Scholar 

  • Liu M, King B, Dunn P, Rong N, Townsend-Nicholson A, Burnstock G (2001) Coexpression of P2X3 and P2X2 receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296: 1043–1050

    PubMed  CAS  Google Scholar 

  • Louie S, Kim BK, Zamecnik P (1988) Diadenosine 5′,5′-P1,P4-tetraphosphate, a potential antithrombotic agent. Thromb Res 49: 557–565

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Jankowski J, Knobloch M et al. (1999) Identification and characterization of diadenosine 5′,5‴-P1,P2-diphosphate and diadenosine 5′,5‴-P1,P3-triphosphate in human myocardial tissue. Faseb J 13: 695–705

    PubMed  CAS  Google Scholar 

  • Luo J, Jankowski V, Gungar N et al. (2004) Endogenous diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate in human myocardial tissue. Hypertension 43: 1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Lüthje J, Baringer J, Ogilvie A (1985) Effects of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) on platelet aggregation in unfractionated human blood. Blut 51: 405–413

    Article  PubMed  Google Scholar 

  • Lüthje J, Ogilvie A (1983) The presence of diadenosine 5′,5′-P1,P3-triphosphate (Ap3A) in human platelets. Biochem Biophys Res Commun 115: 253–260

    Article  PubMed  Google Scholar 

  • Lüthje J, Ogilvie A (1987) Catabolism of Ap4A and Ap3A in human serum. Identification of isoenzymes and their partial characterization. Eur J Biochem 169: 385–388

    Article  PubMed  Google Scholar 

  • Lüthje J, Baringer J, Ogilvie A (1985) Highly efficient induction of human platelet aggregation in heparinized platelet-rich plasma by diadenosine triphosphate (Ap3A). Thromb Haemost 54: 469–471

    PubMed  Google Scholar 

  • Marques A, Teixeira N, Gambaretto C, Sillero A, Günther Sillero M (1998) IMP-GMP 59-nucleotidase from rat brain: activation by polyphosphates. J Neurochem 71: 1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64: 104–112

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Pintor J, Rovira JM, Ripoll C, Miras-Portugal MT, Soria B (1998) Intracellular diadenosine polyphosphates: a novel second messenger in stimulus-secretion coupling. Faseb J 12: 1499–1506

    PubMed  CAS  Google Scholar 

  • Mateo J, Miras-Portugal MT, Rotllan P (1997) Ecto-enzymatic hydrolysis of diadenosine polyphosphates by cultured adrenomedullary vascular endothelial cells. Am J Physiol 273: C918–927

    PubMed  CAS  Google Scholar 

  • McLennan AG (2000) Dinucleoside polyphosphates — friend or foe? Pharmacol Ther 87: 73–89

    Article  PubMed  CAS  Google Scholar 

  • McLennan AG, Mayers E, Hankin S, Thorne NM, Prescott M, Powls R (1994) The green alga Scenedesmus obliquus contains both diadenosine 5′,5′-P1,P4-tetraphosphate (asymmetrical) pyrophosphohydrolase and phosphorylase activities. Biochem J 300: 183–189

    PubMed  CAS  Google Scholar 

  • McLennan AG, Flannery AV, Morten JE, Ridanpaa M (1998) Chromosomal localization of the human diadenosine 5′,5‴-P1,P4-tetraphosphate pyrophosphohydrolase (Ap4A hydrolase) gene (APAH1) to 9pl3. Genomics 47: 307–309

    Article  PubMed  CAS  Google Scholar 

  • Miras-Portugal MT, Gualix J, Pintor J (1998) The neurotransmitter role of diadenosine polyphosphates. FEBS Lett 430: 78–82

    Article  PubMed  CAS  Google Scholar 

  • Miras-Portugal MT, Pintor J, Gualix J (2003) Ca2+ signalling in brain synaptosomes activated by dinucleotides. J Membr Biol 194: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Murcia G de, Schreiber V, Molinete M et al. (1994) Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138: 15–24

    Article  PubMed  Google Scholar 

  • Nakajima H, Tomioka I, Kitabatake S, Tomita K (1990) Enzymatic synthesis of diadenosine polyphosphates by leucyl tRNA synthetase coupled with ATP regeneration. Ann N Y Acad Sci 613: 734–737

    PubMed  CAS  Google Scholar 

  • Neumann J, Meissner A, Boknik P et al. (1999) Inotropic effects of diadenosine tetraphosphate in isolated canine cardiac preparations. J Cardiovasc Pharmacol 33: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Nicke A, Rettinger J, Schmalzing G (2003) Monomeric and dimeric byproducts are the principal functional elements of higher order P2X1 concatamers. Mol Pharmacol 63:243–252

    Article  PubMed  CAS  Google Scholar 

  • Nishimura A, Moriya S, Ukai H, Nagai K, Wachi M, Yamada Y (1997) Diadenosine 5′,5′-P1,P4-tetraphosphate (Ap4A) controls the timing of cell division in Escherichia coli. Genes Cells 2: 401–413

    Article  PubMed  CAS  Google Scholar 

  • Norenberg W, Illes P (2000) Neuronal P2X receptors: Localisation and functional properties. Naunyn Schmiedebergs Arch Pharmacol 362: 324–339

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie A, Blasius R, Schulze-Lohoff E, Sterzel RB (1996) Adenine dinucleotides: A novel class of signalling molecules. J Auton Pharmacol 16: 325–328

    PubMed  CAS  Google Scholar 

  • Ohta M, Inoue H, Cotticelli MG et al. (1996) The FHIT gene, spanning the chromosome 3pl4.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Ortiz B, Sillero A, Gunther Sillero MA (1993) Specific synthesis of adenosine(5′)tetraphospho(5′)nucleoside and adenosine(5′)oligophospho(5′)adenosine (n > 4) catalyzed by firefly luciferase. Eur J Biochem 212: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Oury C, Toth-Zsamboki E, Van Geet C et al. (2000) A natural dominant negative P2X1 receptor due to deletion of a single amino acid residue. J Biol Chem 275: 22611–22614

    Article  PubMed  CAS  Google Scholar 

  • Pace HC, Garrison PN, Robinson AK et al. (1998) Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci USA 95: 5484–5489

    Article  PubMed  CAS  Google Scholar 

  • Pace HC, Hodawadekar SC, Draganescu A et al. (2000) Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol 10: 907–917

    Article  PubMed  CAS  Google Scholar 

  • Pandis N, Bardi G, Mitelman F, Heim S (1997) Deletion of the short arm of chromosome 3 in breast tumors. Genes Chromosomes Cancer 18: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Patel K, Barnes A, Camacho J, Paterson C, Boughtflower R, Cousens D, Marshall F (2001) Activity of diadenosine polyphosphates at P2Y receptors stably expressed in 1321N1 cells. Eur J Pharmacol 430: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, Miras-Portugal MT (1995 a) A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat midbrain synaptosomes. Br J Pharmacol 115: 895–902

    PubMed  CAS  Google Scholar 

  • Pintor J, Miras-Portugal MT (1995 b) P2 purinergic receptors for diadenosine polyphosphates in the nervous system. Gen Pharmacol 26: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, Miras-Portugal MT (2000) Receptors for diadenosine polyphosphates P2D, P2YApnA, P4 and dinucleotide receptors: Are there too many? Trends Pharmacol Sci 21:135

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, Torres M, Miras-Portugal MT (1991) Carbachol induced release of diadenosine polyphosphates — Ap4 A and Ap5A — from perfused bovine adrenal medulla and isolated chromaffin cells. Life Sci 48: 2317–2324

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, Diaz-Rey MA, Torres M, Miras-Portugal MT (1992) Presence of diadenosine polyphosphates — Ap4A and Ap5A — in rat brain synaptic terminals. iCa2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci Lett 136: 141–144

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, King BF, Miras-Portugal MT, Burnstock G (1996) Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol 119: 1006–1012

    PubMed  CAS  Google Scholar 

  • Pintor J, Diaz-Hernandez M, Gualix J, Gomez-Villafuertes R, Hernando F, Miras-Portugal MT (2000) Diadenosine polyphosphate receptors. from rat and guinea-pig brain to human nervous system. Pharmacol Ther 87: 103–115

    Article  PubMed  CAS  Google Scholar 

  • Plateau P, Mayaux JF, Blanquet S (1981) Zinc(II)-dependent synthesis of diadenosine 5′,5‴-P(1),P(4)-tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases. Biochemistry 20: 4654–4662

    Article  PubMed  CAS  Google Scholar 

  • Purich D, Fromm H (1972) Inhibition of rabbit skeletal muscle adenylate kinase by the transition state analogue, P1,P4-di(adenosine-)tetraphosphate. Biochim Biophys Acta 276: 563–567

    PubMed  CAS  Google Scholar 

  • Pype S, Siegers H (1993) Inhibition of casein kinase II by dinucleoside polyphosphates. Enzyme Protein 47: 14–21

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492

    PubMed  CAS  Google Scholar 

  • Ralevic V, Jankowski J, Schlüter H (2001) Structure-activity relationships of diadenosine polyphosphates (Ap(n)As), adenosine polyphospho guanosines (Ap(n)Gs) and guanosine polyphospho guanosines (Gp(n)Gs) at P2 receptors in the rat mesenteric arterial bed. Br J Pharmacol 134: 1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Pintor J, Miras-Portugal MT, Rotllan P (1995) Use of fluorogenic substrates for detection and investigation of ectoenzymatic hydrolysis of diadenosine polyphosphates: A fluorometric study on chromaffin cells. Anal Biochem 228: 74–82

    Article  PubMed  CAS  Google Scholar 

  • Rapaport E, Zamecnik PC (1976) Presence of diadenosine 5′,5′-P1,P4-tetraphosphate (Ap4A) in mammalian cells in levels varying widely with proliferative activity of the tissue: A possible positive “pleiotypic activator”. Proc Natl Acad Sci USA 73: 3984–3988

    Article  PubMed  CAS  Google Scholar 

  • Rapaport E, Zamecnik PC, Baril EF (1981) Association of diadenosine 5′,5‴-P1,P4-tetraphosphate binding protein with HeLa cell DNA polymerase alpha. J Biol Chem 256: 12148–12151

    PubMed  CAS  Google Scholar 

  • Ripoll C, Martin F, Manuel Rovira J, Pintor J, Miras-Portugal MT, Soria B (1996) Diadenosine polyphosphates. A novel class of glucose-induced intracellular messengers in the pancreatic beta-cell. Diabetes 45: 1431–1434

    PubMed  CAS  Google Scholar 

  • Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11: 378–386

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez del Castillo A, Torres M, Delicado EG, Miras-Portugal MT (1988) Subcellular distribution studies of diadenosine polyphosphates — Ap4A and Ap5A — in bovine adrenal medulla: presence in chromaffin granules. J Neurochem 51: 1696–1703

    PubMed  CAS  Google Scholar 

  • Roman RM, Fitz JG (1999) Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. Gastroenterology 116: 964–979

    Article  PubMed  CAS  Google Scholar 

  • Rongen GA, Floras JS, Lenders JW, Thien T, Smits P (1997) Cardiovascular pharmacology of purines. Clin Sci (Lond) 92: 13–24

    CAS  Google Scholar 

  • Roz L, Gramegna M, Ishii H, Croce CM, Sozzi G (2002) Resoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines. Proc Natl Acad Sci USA 99: 3615–3620

    Article  PubMed  CAS  Google Scholar 

  • Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 274: 21735–21740

    Article  PubMed  CAS  Google Scholar 

  • Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM (2001) P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 283: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Lohrmann R, Orgel LE (1975) Prebiotic peptideformation in the solid state. II. Reaction of glycine with adenosine 5′-triphosphate and P1,P2-diadenosine-pyrophosphate. J Mol Evol 6: 165–184

    Article  PubMed  CAS  Google Scholar 

  • Schachter J, Li Q, Boyer J, Nicholas R, Harden T (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1 purinoceptor. Br J Pharmacol 118: 167–173

    PubMed  CAS  Google Scholar 

  • Schimmel P, Wang C (1999) Getting tRNA synthetases into the nucleus. Trends Biochem Sci 24: 127–128

    Article  PubMed  CAS  Google Scholar 

  • Schlüter H, Offers E, Bruggemann G et al. (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367: 186–188

    Article  PubMed  Google Scholar 

  • Schlüter H, Grobeta I, Bachmann J et al. (1998) Adenosine(5′) oligophospho-(5′) guanosines and guanosine(5′) oligophospho-(5′) guanosines in human platelets. J Clin Invest 101: 682–688

    Article  PubMed  Google Scholar 

  • Schulze-Lohoff E, Zanner S, Ogilvie A, Sterzel RB (1995) Vasoactive diadenosine polyphosphates promote growth of cultured renal mesangial cells. Hypertension 26: 899–904

    PubMed  CAS  Google Scholar 

  • Schwiebert EM (2001) ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Pharmacol Physiol 28: 340–350

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Zou M, Farid NR, Paterson MC (2000) Association of FHIT (fragile histidine triad), a candidate tumour suppressor gene, with the ubiquitin-conjugating enzyme hUBC9. Biochem J 352: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Sillero A, Günther Sillero G (2000) Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase and several ligases. Pharmacol Ther 87

    Google Scholar 

  • Sillero MA, Guranowski A, Sillero A (1991) Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase. Eur J Biochem 202: 507–513

    Article  PubMed  CAS  Google Scholar 

  • Silvestre RA, Rodriguez-Gallardo J, Egido EM, Marco J (1999) Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas. Br J Pharmacol 128: 795–801

    Article  PubMed  CAS  Google Scholar 

  • Siprashvili Z, Sozzi G, Barnes LD et al. (1997) Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci USA 94: 13771–13776

    Article  PubMed  CAS  Google Scholar 

  • Sitkovsky MV (1998) Extracellular purines and their receptors in immunoregulation. Review of recent advances. Nippon Ika Daigaku Zasshi 65: 351–357

    PubMed  CAS  Google Scholar 

  • Sozzi G, Pastorino U, Moiraghi L et al. (1998) Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 58: 5032–5037

    PubMed  CAS  Google Scholar 

  • Stephens JC, Artz SW, Ames BN (1975) Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): Positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci USA 72: 4389–4393

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi R, Nishimura J, Kawasaki J, Kobayashi S, Takahashi S, Kanaide H (1997) Diadenosine polyphosphates directly relax porcine coronary arterial smooth muscle. J Pharmacol Exp Ther 283: 548–556

    PubMed  CAS  Google Scholar 

  • Surowy CS, Berger NA (1983) Diadenosine 5′,5‴-P1,P4-tetraphosphate stimulates processing of adp-ribosylated poly-(ADP-ribose) polymerase. J Biol Chem 258: 579–583

    PubMed  CAS  Google Scholar 

  • Takahashi K, Kasai K, Ochi K (2004) Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci USA 101: 4320–4324

    Article  PubMed  CAS  Google Scholar 

  • Terzic A, Jahangir A, Kurachi Y (1995) Cardiac ATP-sensitive K+ channels regulation by intracellular nucleotides and K+ channel opening drugs. Am J Physiol 269: C525–C545

    PubMed  CAS  Google Scholar 

  • Thorne NM, Hankin S, Wilkinson MC, Nunez C, Barraclough R, McLennan AG (1995) Human diadenosine 5′,5‴-P1,P4-tetraphosphate pyrophosphohydrolase is a member of the MutT family of nucleotide pyrophosphatases. Biochem J 311: 717–721

    PubMed  CAS  Google Scholar 

  • Unwin RJ, Bailey MA, Burnstock G (2003) Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci 18: 237–241

    PubMed  CAS  Google Scholar 

  • Vahlensieck U, Boknik P, Knapp J et al. (1996) Negative chronotropic and inotropic effects exerted by diadenosine hexaphosphate (AP6 A) via Al-adenosine receptors. Br J Pharmacol 119: 835–844

    PubMed  CAS  Google Scholar 

  • Vartanian A, Narovlyansky A, Amchenkova A, Turpaev K, Kisselev L (1996) Interferons induce accumulation of diadenosine triphosphate (Ap3A) in human cultured cells. FEBS Lett 381: 32–34

    Article  PubMed  CAS  Google Scholar 

  • Vartanian A, Prudovsky I, Suzuki H, Dal Pra I, Kisselev L (1997) Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett 415: 160–162

    Article  PubMed  CAS  Google Scholar 

  • Vartanian A, Alexandrov I, Prudowski I, McLennan A, Kisselev L (1999) Ap4A induces apoptosis in human cultured cells. FEBS Lett 456: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Vartanian AA, Suzuki H, Poletaev AI (2003) The involvement of diadenosine 5′,5‴-P1,P4-tetraphosphate in cell cycle arrest and regulation of apoptosis. Biochem Pharmacol 65: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Verspohl EJ, Johannwille B (1998) Diadenosine polyphosphates in insulin-secreting cells: interaction with specific receptors and degradation. Diabetes 47: 1727–1734

    PubMed  CAS  Google Scholar 

  • Verspohl EJ, Blackburn GM, Hohmeier N, Hagemann J, Lempka M (2003) Synthetic, nondegradable diadenosine polyphosphates and diinosine polyphosphates: T effects on insulin-secreting cells and cultured vascular smooth muscle cells. J Med Chem 46: 1554–1562

    Article  PubMed  CAS  Google Scholar 

  • Vollmayer P, Clair T, Goding JW, Sano K, Servos J, Zimmermann H (2003) Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. Eur J Biochem 270: 2971–2978

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Perkins KL (1984) Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet 11: 479–481

    Article  PubMed  CAS  Google Scholar 

  • Warner AH, Finamore FJ (1965) Isolation, purification, and characterization of P1,P3-diguanosine 5′-triphosphate from brine shrimp eggs. Biochim Biophys Acta 108: 525–530

    PubMed  CAS  Google Scholar 

  • Warner AH, Huang FL (1974) Biosynthesis of the diguanosine nucleotides. II. Mechanism of action of GTP:GTP guanylyltransferase on nucleotide metabolism in brine shrimp embryos. Can J Biochem 52: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Warner AH, Beers PC, Huang FL (1974) Biosynthesis of the diguanosine nucleotides. I. Purification and properties of an enzyme from yolk platelets of brine shrimp embryos. Can J Biochem 52: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Weinmann-Dorsch C, Hedl A, Grummt I et al. (1984) Drastic rise of intracellular adenosine(5′)tetraphospho(5′)adenosine correlates with onset of DNA synthesis in eukaryotic cells. Eur J Biochem 138: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Wildman SS, Brown SG, King BF, Burnstock G (1999) Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol 367: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Kodama M, Ueda K (1985) Diadenosine tetraphosphate as a signal molecule linked with the functional state of rat liver. Gastroenterology 89: 723–731

    PubMed  CAS  Google Scholar 

  • Yoshihara K, Tanaka Y (1981) ADP-ribosylation of diadenosine 5′,5″-P1,P4-tetraphosphate by poly(ADP-ribose) polymerase in vitro. J Biol Chem 256: 6756–6761

    PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML, Janeway CM, Randerath K (1966) Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun 24: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Rapaport E, Baril EF (1982) Priming of DNA synthesis by diadenosine 5′,5‴-P1,P4-tetraphosphate with a double-stranded octadecamer as a template and DNA polymerase alpha. Proc Natl Acad Sci USA 79: 1791–1794

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Luo L, Gustafson E et al. (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276: 8608–8615

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Braun N (1996) Extracellular metabolism of nucleotides in the nervous system. J Auton Pharmacol 16: 397–400

    PubMed  CAS  Google Scholar 

  • Zimmermann H, Volknandt W, Wittich B, Hausinger A (1993) Synaptic vesicle life cycle and synaptic turnover. J Physiol Paris 87: 159–170

    Article  PubMed  CAS  Google Scholar 

  • Zourgui L, Tharaud D, Solari A, Litvak S, Tarrago-Litvak L (1984) Stimulation of DNA synthesis by microinjection of diadenosine 5′,5″-P1,P4-tetraphosphate (Ap4A) into Xenopus laevis oocytes. Dev Biol 103: 409–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlüter, H. (2006). Alarmone: Signalfaktoren in der lokalen Regulation. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_8

Download citation

Publish with us

Policies and ethics