Skip to main content

Observation of Micromagnetic Configurations in Mesoscopic Magnetic Elements

  • Chapter
  • First Online:
Spin Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 569))

Abstract

Advances in materials growth and characterization have, over the past ten years, made possible the investigation of basic physical processes in new “artificial” materials. These materials are artificial in the sense that the geometry and composition are controlled during growth on micrometer and nanometer length scales. This results in macroscopic behaviour that can be dramatically different from that of a material in its bulk form. Magnetic order and reversal processes, which have been extensively studied since the turn of the century, are now being re-examined for nanostructured materials.

The results presented here for the different magnetization configurations observed in submicron magnetic dots, rings and wires exemplify current state-of-the-art growth, lithography and imaging technologies. Using these geometries the potential for precise control of micromagnetic behaviour in patterned materials by control of shape and size is demonstrated. The boundaries between the different ground state configurations have been established experimentally as a function of the lateral width and height. Furthermore, metastable configurations can be induced following specific magnetization histories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Grünberg, R. Schreiber, Y. Pang, M. Brodsky and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).

    Article  Google Scholar 

  2. K. Ounadjela, D. Muller, A. Dinia, A. Arbaoui, P. Panissod, and G. Suran, Phys. Rev. B 45, 7768 (1992).

    Article  CAS  Google Scholar 

  3. P. J. H. Bloemen, H. W. van Kerstern, H. J. M. Swagten, and W. J. M. de Jonge, Phys. Rev. B 50, 13505 (1994).

    Article  CAS  Google Scholar 

  4. P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).

    Article  CAS  Google Scholar 

  5. S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).

    Article  CAS  Google Scholar 

  6. P. Bruno, Phys. Rev. B 52, 411 (1995).

    Article  CAS  Google Scholar 

  7. P. Carcia, A. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).

    Article  CAS  Google Scholar 

  8. Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. Lett. 70, 1006 (1993).

    Article  Google Scholar 

  9. A. Berger and H. Hopster, Phys. Rev. Lett. 76, 519 (1996).

    Article  CAS  Google Scholar 

  10. M. N. Baibich, J. M. Broto, A. Fert, Nguyen Van Dau, F. Petro., P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  CAS  Google Scholar 

  11. For a review on GMR, see A. Barthelemy, A. Fert, F. Petro., “Giant Magnetoresistance in Magnetic Multilayers”, Handbook of Magnetic Materials, Vol. 12, Edited by K. Buschow, 1999, Elsevier Science.

    Google Scholar 

  12. P. Bruno in “Synchrotron Radiation and Magnetism” edited by E. Beaurepaire, B. Carrière, and J.-P. Kappler, Les Editions de Physique, Les Ulis (1997).

    Google Scholar 

  13. W. Geerts, Y. Suzuki, T. Katayama, K. Tanaka, K. Ando, and S. Yoshida, Phys. Rev. B 50, 12581 (1994).

    Article  CAS  Google Scholar 

  14. K. Ounadjela and R. L. Stamps, “Mesoscopic Magnetism in Metals” in the Handbook of Nanostructured Materials and Nanotechnology, Vol. 2: Spectroscopy and Theory, p. 429, Editor Hari Singh Nalwa, Academic Press (1999).

    Article  Google Scholar 

  15. M. A. Kastner, Rev. Mod. Phys., 64, 849 (1992)

    Article  Google Scholar 

  16. M. A. Kastner, Physics Today, 24(1993).

    Google Scholar 

  17. M. Johnson, “Magnetoelectronic memories last and last...”, IEEE Spectrum, 33, (February 2000).

    Google Scholar 

  18. J. Zhu and G. A. Prinz, “VMRAM memory holds both promise and challenge”, Data Storage, 40, (September 2000).

    Google Scholar 

  19. G.A. Prinz and K. Hathaway, “Magnetoelectronics”, Physics Today, Vol. 48, 24 (1995).

    Article  Google Scholar 

  20. G. A. Gibson and S. Schultz, J. Appl. Phys. 73, 4516 (1993).

    Article  CAS  Google Scholar 

  21. A. D. Kent, S. van Molnar, S. Gider, D. D. Awschalom, J. Appl. Phys. 76, 6656 (1994).

    Article  CAS  Google Scholar 

  22. S. Manalis, K. Babcock, J. Massie, V. Elings, M. Dugas, Appl. Phys. Lett. 66, 2585 (1995).

    Article  CAS  Google Scholar 

  23. S. Okazaki, “Lithography for VLSI”, Proc. SPIE 2440 (1995).

    Google Scholar 

  24. D. L. Spears and H. I. Smith, Solid State Technol. 12, 21 (1972).

    Google Scholar 

  25. G. Simon, A. M. Haghiri-Gosnet, J. Bourneix, D. Decanini, Y. Chen, F. Rousseaux, H. Launois, and B. Vidal, J. Vac. Sci. Technol. B 15, 2489 (1997).

    Article  CAS  Google Scholar 

  26. For a review on different lithography techniques see: Y. Chen and A. Pepin, “Nanofabrication: Conventional and non-conventional methods”, Electrophoresis, to appear in January 2001.

    Google Scholar 

  27. M. Hehn, K. Ounadjela, J.-P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, Science 272, 1782 (1996).

    Article  CAS  Google Scholar 

  28. S. Chou, IEEE Trans. Mag., 85, 664 (1997).

    Google Scholar 

  29. K. Hong and N. Giordano, J. Phys.: Condens. Matter 10, L401 (1998).

    Article  CAS  Google Scholar 

  30. U. Ruediger, J. Yu, S. Zhang, A. Kent, and S. S. P. Parkin, Phys. Rev. Lett. 80, 5639 (1998).

    Article  CAS  Google Scholar 

  31. U. Ebels, A. Radulescu, Y. Henry, L. Piraux, and K. Ounadjela, Phys. Rev. Lett. 84, 983(2000).

    Article  CAS  Google Scholar 

  32. M. Viret, Y. Samson, P. Warin, A. Marty, F. Ott, E. Sondergard, O. Klein, and C. Fermon, Phys. Rev. Lett. 85, 3962 (2000).

    Article  CAS  Google Scholar 

  33. W. Wernsdorfer, K. Hasselbach, A. Suplice, A. Benoit, J.-E. Wergrowe, L. Thomas, B. Barbara, and D. Mailly, Phys. Rev. B 53, 3341 (1996).

    Article  CAS  Google Scholar 

  34. W. Wernsdorfer, B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J.-Ph. Ansermet, and B. Barbara, Phys. Rev. Lett. 77, 1873(1996).

    Article  CAS  Google Scholar 

  35. W. Wernsdorfer, K. Hasselbach, B. Barbara, L. Thomas, D. Mailly, and G. Suran, J. Magn. Magn. Mater. 145, 33–39 (1995).

    Article  CAS  Google Scholar 

  36. K. Ounadjela, M. Hehn and R. Ferré, “Domain confinement in mesoscopic eptitaxial cobalt patches”, in “Magnetic hysteresis in novel magnetic materials”, edited by G. Hadjipanayis, Kluwer Academic Publishers, 485 (1997).

    Google Scholar 

  37. A. Hubert and R. Schäfer, “Magnetic domains”, Springer, Berlin, (1998).

    Google Scholar 

  38. R. D. Gomez, T. V. Luu, A. O. Pak, K. J. Kirk, and J. N. Chapman, J. Appl. Phys. 85, 6163(1999).

    Article  CAS  Google Scholar 

  39. I. L. Prejbeanu, L. D. Buda, U. Ebels, M. Viret, C. Fermon, and K. Ounadjela, IEEE Trans. Magn., June (2001).

    Google Scholar 

  40. F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M.F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787 (1995).

    Article  CAS  Google Scholar 

  41. L. Piraux, S. Dubois, E. Ferain, R. Legras, K. Ounadjela, J.-M. George, J.-L. Maurice, and A. Fert, J. Magn. Magn. Mater. 165, 352 (1997).

    Google Scholar 

  42. E. Ferain and R. Legras, Nucl. Instrum. Methods B 131, 97 (1997) and references therein.

    Article  CAS  Google Scholar 

  43. J.-L. Maurice, D. Imhoff, P. Etienne, O. Durand, S. Dubois, L. Piraux, J.-M. George, P. Galtier, and A. Fert, J. Magn. Magn. Mater. 184, 1 (1998).

    Google Scholar 

  44. K. L. Babcock, V. B. Elings, J. Shi, D. D. Awschalom, and M. Dugas, Appl. Phys. Lett. 69, 705 (1996).

    Article  CAS  Google Scholar 

  45. R. Wiesendanger “Scanning Probe microscopy and spectroscopy: methods and applications”, Cambridge University Press, 1995.

    Google Scholar 

  46. J. J. Saentz, N. Garcia, P. Grutter, E. Meyer, H. Heizelmann, R. Wiesendanger, L. Rosenthaler, H. R. Hidber, and H. J. Güntherodt, J. Vac. Sci. Technol. A6, 279 (1988).

    Google Scholar 

  47. Y. Martin, C. C. Williams, and H.K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987).

    Article  CAS  Google Scholar 

  48. D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, J. McFadyen, and T. Yogi, J. Appl. Phys 68, 1169 (1990)

    Article  CAS  Google Scholar 

  49. H. J. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser, R. Hofer, S. Martin, H.-J. Güntherodt, S. Porthun, L. Abelmann, J. C. Lodder, G. Bochi, and R. C. O’Handley, J. Appl. Phys. 83, 5609 (1998).

    Article  CAS  Google Scholar 

  50. R. Proksch, G. D. Skidmore, E. D. Dahlberg, S. Foss, J. J. Schmidt, C. Merton, B. Walsh, and M. Dugas, Appl. Phys. Lett. 69, 2599 (1996).

    Article  CAS  Google Scholar 

  51. S. Porthun, L. Abelmann, C. Lodder, J. Magn. Magn. Mater. 182, 238 (1998).

    Article  CAS  Google Scholar 

  52. L. D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153(1935).

    Google Scholar 

  53. T. J. Gilbert, Phys. Rev. 100, 1243(1955).

    Google Scholar 

  54. A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res. 98, 9551 (1993).

    Google Scholar 

  55. Y. Nakatani, N. Uesaka, and N. Hayashi, J. Appl. Phys. 28, 2485 (1989).

    Article  CAS  Google Scholar 

  56. P. Weiss, J. de Phys. Rad. 6, 661 (1907).

    Google Scholar 

  57. For a review on magnetic bubbles in oxides see: A. P. Malozemo. and J. C. Slonczewski, “Magnetic Domain Walls in Bubble Materials”, Academic Press, New York, (1979).

    Google Scholar 

  58. C. Kittel, Phys. Rev. 70, 965 (1946).

    Article  CAS  Google Scholar 

  59. C. Kooy and U. Enz, Philips Res. Rep. 15, 7 (1960).

    Google Scholar 

  60. S. Chikazumi, “Physics of Ferromagnetism”, chapter 17, Oxford University Press, 1997.

    Google Scholar 

  61. D. Craik, “Magnetism principles and applications”, chapter 4.1, Wiley 1995.

    Google Scholar 

  62. A. H. Bobeck and E. Della Torre, “Magnetic Bubbles”, North Holland, Amsterdam (1975).

    Google Scholar 

  63. A. H. Eschenfelder, “Magnetic Bubble Technology”, Springer, Berlin, Heidelberg, New York (1981).

    Google Scholar 

  64. M. Hehn, S. Padovani, K. Ounadjela, and J.-P. Bucher, Phys. Rev. B. 54, 3428 (1996).

    Article  CAS  Google Scholar 

  65. U. Ebels, L. Buda, P. E. Wigen, and K. Ounadjela, Chapter 6 in “Spin Dynamics in Confined Magnetic Structures”, edited by B. Hillebrands and K. Ounadjela, Springer, Spring 2001.

    Google Scholar 

  66. V. Gehanno, A. Marty, B. Gilles, and Y. Samson, Phys. Rev. B 55, 12552 (1997); V. Gehanno, Y. Samson, A. Marty, B. Gilles, and A. Chamberod, J. Magn. Magn. Mater. 172, 26 (1997).

    Article  CAS  Google Scholar 

  67. A. Asenjo, J. M. Garcia, D. Garcia, A. Hernando, M. Vazquez, P. A. Caro, D. Ravelosona, A. Cebollada, and F. Briones, J. Magn. Magn. Mater. 196, 23(1999).

    Article  Google Scholar 

  68. L. Folks, U. Ebels, R. Sooryakumar, D. Weller, and R. F. C. Farrow, J. Magn. Soc. Jpn. 23 No S1, 85 (1999).

    Google Scholar 

  69. R. Allenspach and M. Stampanoni, in “Magnetic Surfaces, Thin Films and Multilayers”, edited by S. S. P. Parkin et al., MRS Symposia Proceedings no. 231, p.17, Material Research Society Pittsburg (1992).

    Google Scholar 

  70. This is illustrated for the case of eptiaxial Fe films in: E. Gu, E. Ahmad, S. J. Gray, C. Daboo, J. A. C. Bland, L. M. Brown, M. Rührig, A. J. McGibbon, and J. N. Chapman, Phys. Rev. Lett. 78, 1158 (1997).

    Article  CAS  Google Scholar 

  71. M. Demand, M. Hehn, K. Ounadjela, R. L. Stamps, E. Cambril, A. Cornette, and F. Rousseaux, J. Appl. Phys. 87, 5111 (2000).

    Article  CAS  Google Scholar 

  72. T. Shinjo, T. Okuna, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).

    Article  CAS  Google Scholar 

  73. M. Schneider, H. Hoffmann, and J. Zweck, Appl. Phys. Lett. 77, 2909 (2000).

    Article  CAS  Google Scholar 

  74. R. P. Cowburn, J. Phys. D 33, R1 (2000).

    Article  CAS  Google Scholar 

  75. W. F. Brown, Jr., J. Appl. Phys. 39, 993(1968).

    Article  Google Scholar 

  76. M. Hehn, PhD thesis, University Louis Pasteur, Strasbourg (1997).

    Google Scholar 

  77. M. Hehn, R. Ferré, K. Ounadjela, J.-P. Bucher, and F. Rousseaux, J. Magn. Magn. Mater. 165, 5 (1997).

    Article  CAS  Google Scholar 

  78. R. Ferré, M. Hehn, and K. Ounadjela, J. Magn. Magn. Mater. 165, 9 (1997).

    Article  Google Scholar 

  79. R. P. Cowburn, A. O. Adeyeye, and M. E. Welland, Phys. Rev. Lett. 81, 5414 (1998).

    Article  CAS  Google Scholar 

  80. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042 (1999).

    Article  CAS  Google Scholar 

  81. M. Demand, PhD thesis, University Louis Pasteur, Strasbourg (1998).

    Google Scholar 

  82. J. Raabe, R. Pulwey, R. Sattler, T. Zweck, and D. Weiss, J. Appl. Phys. 88, 4437 (2000).

    Article  CAS  Google Scholar 

  83. T. Pokhil, D. Song, and J. Nowak, J. Appl. Phys. 87, 6319 (2000).

    Article  CAS  Google Scholar 

  84. A. Fernadez and C. J. Cerjan, J. Appl. Phys. 87, 1395 (2000).

    Article  Google Scholar 

  85. A. Fernandez, M. R. Gibbsons, M. A. Wall, and C. J. Cerjan, J. Magn. Magn. Mater. 190, 71 (1998).

    Article  CAS  Google Scholar 

  86. E. Girgis, J. Schelten, J. Shi, J. Janeski, S. Tehrani, and H. Goronkin, Appl. Phys. Lett. 76, 3780 (2000).

    Article  CAS  Google Scholar 

  87. M. Kleiber, F. Kümmerlein, M. Löhndorf, A. Wadas, D. Weiss, and R. Wiesendanger, Phys. Rev. B 58, 5563(1998).

    Article  CAS  Google Scholar 

  88. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. London, Ser. A 240, 599 (1948); L. Néel, Acad. Sci. Paris, 224, 1550 (1947).

    Article  Google Scholar 

  89. These experiments have been performed by our group in collaboration with M. Natali and Y. Chen, from L2M Bagneux.

    Google Scholar 

  90. L. D. Buda, I. L. Prejbeanu, M. Demand, U. Ebels, and K. Ounadjela, IEEE Trans. Magn., June (2001).

    Google Scholar 

  91. J. Miltat, “Applied Magnetism”, NATO ASI Series, edited by R. Gerber, C. D. Wright, G. Asti, Kluwer Dordrecht, 221 (1994).

    Google Scholar 

  92. M. E. Schabes and H. N. Bertram, J. Appl. Phys. 64, 1347 (1988).

    Article  Google Scholar 

  93. R. P. Cowburn and M. E. Welland, Phys. Rev. B 58, 9217 (1998).

    Article  CAS  Google Scholar 

  94. Y. Zheng and J. Zhu, J. Appl. Phys. 81, 5471 (1997).

    Article  CAS  Google Scholar 

  95. K. J. Kirk, J. N. Chapman, and C. D. W. Wilkinson, Appl. Phys. Lett. 71, 539 (1997).

    Article  CAS  Google Scholar 

  96. J. Shi et al., IEEE Trans. Magn. 34, 997 (1998).

    Article  CAS  Google Scholar 

  97. J. Gadbois, J.-G. Zhu, and W. Vavra, A. Hurst, IEEE Trans. Magn. 34, 1066 (1998).

    Article  Google Scholar 

  98. M. Rührig, B. Khamesehpour, K. J. Kirk, J. N. Chapman, P. Aitchison, S. McVitie, and C. D. W. Wilkinson, IEEE Trans. Magn. 32, 4452 (1996).

    Article  Google Scholar 

  99. J.G. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys. 87, 6668 (2000).

    Article  CAS  Google Scholar 

  100. S. P. Li, A. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L.D. Buda, and K. Ounadjela, Phys. Rev. Lett. 86, (2001).

    Google Scholar 

  101. M. Ledermann, R. O’Barr, and S. Schultz, IEEE Trasn. Magn. 31 3793 (1997); R. O’Barr and S. Schultz, J. Appl. Phys. 81, 5458 (1997).

    Article  Google Scholar 

  102. R. Ferre, K. Ounadjela, J. M. George, L. Piraux, and S. Dubois, Phys. Rev. B 56, 14066 (1997).

    Article  CAS  Google Scholar 

  103. J.-E. Wegrowe, D. Kelly, A. Franck, S. E. Gilbert, and J.-Ph. Ansermet, Phys. Rev. Lett. 82, 3681 (1999).

    Article  CAS  Google Scholar 

  104. I. L. Prejbeanu, L. D. Buda, U. Ebels, and K. Ounadjela, Appl. Phys. Lett. 77, 3066 (2000).

    Article  CAS  Google Scholar 

  105. A. Hubert, IEEE Trans. Magn. 21, 1604 (1985).

    Article  Google Scholar 

  106. A. Aharoni, “Introduction to the theory of ferromagnetism”, Clarendon Press, Oxford, (1996).

    Google Scholar 

  107. D. Hinzke and U. Nowak, J. Magn. Magn. Mater. 221, 365 (2000).

    Article  CAS  Google Scholar 

  108. R. C. O’Handley, “Modern Magnetic Materials, Principles and Applications”, Chapter 9.2, Wiley, New York, (2000).

    Google Scholar 

  109. J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thomson, and J. M. D. Coey, Phys. Rev. Lett 77, 1580 (1996)

    Article  CAS  Google Scholar 

  110. M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen, D. S. Daniel, and J. F. Gregg, Phys. Rev. B 53, 8464 (1996).

    Article  CAS  Google Scholar 

  111. D. Ravelosona, A. Cebollada, F. Briones, C. Diaz-Paniagua, M. A. Hidalgo, and F. Batallan, Phys. Rev. B, 59, 4322 (1999).

    Article  CAS  Google Scholar 

  112. A. D. Kent, U. Ruediger, J. Yu, L. Thomas, and S. S. P. Parkin, J. Appl. Phys. 85, 5243(1999).

    Article  CAS  Google Scholar 

  113. M. Viret, Y. Samson, P. Warin, A. Marty, F. Ott, E. Sondergard, O. Klein, and C. Fermon, Phys. Rev. Lett. 85, 3962 (2000).

    Article  CAS  Google Scholar 

  114. P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997).

    Article  CAS  Google Scholar 

  115. T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).

    Article  Google Scholar 

  116. F. C. Schwerer and J. Silcox, Phys. Rev. Lett 20, 101 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ounadjela, K., Prejbeanu, I.L., Buda, L.D., Ebels, U., Hehn, M. (2001). Observation of Micromagnetic Configurations in Mesoscopic Magnetic Elements. In: Ziese, M., Thornton, M.J. (eds) Spin Electronics. Lecture Notes in Physics, vol 569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45258-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45258-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41804-7

  • Online ISBN: 978-3-540-45258-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics