Skip to main content

Theoretical Aspects of the Equilibrium State of Chain Crystals

  • Chapter
Progress in Understanding of Polymer Crystallization

Part of the book series: Lecture Notes in Physics ((LNP,volume 714))

Abstract

The equilibrium state of polymer single crystals is considered by explicitly taking into account the amorphous fraction formed by loops and tails of the chains. Using ideal chain statistics, a general expression for the free energy excess of the amorphous part is derived. I show that tight loops and close reentries are favored under experimental conditions for under-cooling of polymer single crystals. For many chain crystals, I show that the lamellar thickness increases with the number of chains in the crystal, and that extended chain conformations are thermodynamically favored when the number of chains in the crystal is sufficiently large. The role of finite bending rigidity of chains is discussed for folded chain crystals, as well as tilt effects in extended chain crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Keller. A note on single crystals in polymers – evidence for a folded chain configuration. Phil. Mag., 2(21):1171, 1957.

    CAS  Google Scholar 

  2. E. W. Fischer. Stufenförmiges und spiralförmiges wachstum bei hochpolymeren. Z. Naturf. A, 12(9):753–754, 1957.

    Google Scholar 

  3. P. H. Till. The growth of single crystals of linear polyethylene. J. Polym. Sci., 24(106):301–306, 1957.

    Article  CAS  Google Scholar 

  4. J. D. Hoffmann, G. T. Davis, and J. I. Lauritzen. The Rate of Crystallization of Linear Polymers with Chain Folding, volume 3, pp. 497–614. Plenum Press, treatise in solid state chemistry edition, 1976.

    Google Scholar 

  5. D. M. Sadler. New explanation fro chain folding in polymers. Nature, 326:174–177, March 1987.

    Article  Google Scholar 

  6. M. Hikosaka, K. Amano, S. Rastogi, and A. Keller. Lamellar thickening growth of an extended chain single crystal of polyethylene. 1. pointers to a new crystallization mechanism of polymers. Macromolecules, 30(7):2067–2074, March 1997.

    Article  Google Scholar 

  7. M. Al-Hussein and G. Strobl. The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene. Macromolecules, 35(5):1672–1676, February 2002.

    Article  CAS  Google Scholar 

  8. G. Reiter, G. Castelein, and J.-U. Sommer. Liquidlike morphological transformations in monolamellar polymer crystals. Phys. Rev. Lett., 86(26):1918–5921, June 2001.

    Article  CAS  Google Scholar 

  9. J.-U. Sommer and G. Reiter. Morphogegesis of lamellar polymer crystals. Europhys. Lett., 56(5):755–761, December 2001.

    Article  Google Scholar 

  10. G. Ungar, J. Stejny, A. Keller, and M. C. Whiting. The crystallization of ultralong normal paraffines – the onset of chain folding. Science, 229(4711):386–389, 1985.

    Article  CAS  Google Scholar 

  11. S. Rastogi, M. Hikosaka, H. Kawabata, and A. Keller. Role of mobile phase in the crystallization of polyetylene. 1. matastability and lateral growth. Macromolecules, 24:6384–6391, 1991.

    Article  CAS  Google Scholar 

  12. J. A. Subirana. Elucidation of chain folding in polymer crystals: Comparison with proteins. Trends in Pol. Sci., 5(10):321–326, October 1997.

    Google Scholar 

  13. K. Armistead and G. Goldbeck-Wood. Polymer crystallization theories. Adv. Polym. Sci., 100:219–312, 1992.

    Article  Google Scholar 

  14. G. Strobl. The Physics of Polymers. Springer, Berlin, Heidelberg, N.Y., 2 edition, 1997.

    Google Scholar 

  15. H. Zachmann. Der Eeinfluss der Konfigurationsentropie auf das Kristallisationsund Schmelzverhalten von hochpolymeren Stoffen. Kolloid Z. Z. Polym., 216–217:180–191, 1967.

    Google Scholar 

  16. E. W. Fischer. Das grenzflächenschmelzen der kristallite in teilkristallisierten hochpolymeren. teil i: Theoretische grundlagen. Kolloid Z. Z. Polym., 218(2): 97–114, June 1967.

    Article  Google Scholar 

  17. W. Hu, T. Albrecht, and G. Strobl. Reversible surface melting of pe and peo crystallites indicated by tmdsc. Macromolecules, 32(22):7548–7554, 1999.

    Article  CAS  Google Scholar 

  18. M. Muthukumar. Molecular modelling of nucleation in polymers. Phil. Trans. R. Soc. Lond. A, 361:539–556, 2003.

    Article  CAS  Google Scholar 

  19. P. Welch and M. Muthukumar. Molecular mechanisms of polymer crystallization from solution. Phys. Rev. Lett., 87(21):218302, November 2001.

    Article  CAS  Google Scholar 

  20. L. Larini, A. Barbieri, P. A. Rolla, and D. Leporini. Equilibrated polyethylene single-molecule crystals: molecular-dynamics simulations and analytic model of the global minimum of the free-energy landscape. J. Phys: Condens. Matter, 17(19):L199–L208, 2005.

    Article  CAS  Google Scholar 

  21. J. D. Hoffman. Thermodynamic driving force in nucleation and growth processes. J. Chem. Phys., 29(5):1192–1193, November 1958.

    Article  Google Scholar 

  22. G. Wulff. On the question of speed of growth and dissolution of crystal surfaces. Zeitschrift für Kristallographie und Mineralogie, 34:449, 1901.

    CAS  Google Scholar 

  23. J.-U. Sommer and G. Reiter. Crystallization in ultra-thin polymer films morphogenesis and thermodynamical aspects. Thermochimica Acta, 432(2):135–147, June 2005.

    Article  CAS  Google Scholar 

  24. P. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca and London, 1979.

    Google Scholar 

  25. J.-U. Sommer. The role of the amorphous fraction for the equilibrium shape of polymer single crystals. Eur. Phys. J. E, 19, 413–422, 2006.

    Article  CAS  Google Scholar 

  26. M. Doi and S. Edwards. The Theory of Polymer Dynamics. Clarendon Press, Oxford, 1986.

    Google Scholar 

  27. D. S. M. de Silva, X. B. Zeng, G. Ungar, and S. J. Spells. Chain tilt and surface disorder in lamellar crystals. a ftir and saxs study of labeled long alkanes. Macromolecules, 35(20):7730–7741, September 2002.

    Article  CAS  Google Scholar 

  28. D. S. M. de Silva, X. B. Zeng, G. Ungar, and S. J. Spells. On perpendicular and tilted chains in lamellar crystals. J. Macromol. Sci., B42(3,4):915–927, May 2003.

    Google Scholar 

  29. J.-P. Gorce and S. J. Spells. Ftir studies of conformational disorder: crystal perfecting in long chain n-alkanes. Polymer, 45(10):3297–3303, May 2004.

    Article  CAS  Google Scholar 

  30. A. Silberberg. Distribution of conformations and chain ends near the surface of a melt of linear flexible macromolecules. J. Coll. Interface Sci., 90(1):86–91, November 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sommer, JU. (2007). Theoretical Aspects of the Equilibrium State of Chain Crystals. In: Reiter, G., Strobl, G.R. (eds) Progress in Understanding of Polymer Crystallization. Lecture Notes in Physics, vol 714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47307-6_2

Download citation

Publish with us

Policies and ethics