Skip to main content

Laser Doppler and Pulsed Laser Velocimetry in Fluid Mechanics

  • Chapter
  • First Online:
Photomechanics

Part of the book series: Topics in Applied Physics ((TAP,volume 77))

Abstract

Since the introduction of the laser in the late 1960s, optical metrology has made a major impact in many branches of engineering. This is nowhere more apparent than in the field of fluid mechanics where laser technology has revolutionised the way in which fluid flows are studied. The light scattered from small seeding particles following the flow contains information relating to the particle position and velocity. The coherence characteristics and high power densities achievable with a laser source allow well-defined regions of flow to be investigated in a largely non-intrusive manner and on a spatial and temporal scale commensurate with he flow field of interest. This review outlines the laser-based methods of velocimetry that are now available to the fluid dynamicist and discusses their practical application. Laser Doppler velocimetry provides a means to produce time-resolved measurements of fluid velocity at a single point in the flow. The optical design of instruments of this type is addressed with reference to spatial resolution and light gathering performance. Typical Doppler signals produced at both high and low particle concentrations are analysed and signal processing techniques are briefly discussed. Pulsed laser velocimeters use imaging optics to record the position of seeding particles at two or more instants and provide information concerning the instantaneous structure of the flow field. The optical configurations and analysis procedures used for planar velocity measurements are described and whole-field three-dimensional velocity measurements using holographic techniques are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Merzkirch: Flow Visualisation, Academic, New York (1987)

    Google Scholar 

  2. F. Durst, A. Melling, J. H. Whitelaw: Principles and Practice of Laser Doppler Anemometry, Academic, New York (1976)

    Google Scholar 

  3. T. S. Durrani, C. A. Greated: Laser Systems for Flow Measurement, Plenum, New York (1977)

    Google Scholar 

  4. R. J. Adrian: Laser Velocimetry, in R. J. Goldstein (Ed.): Fluid Mechanics Measurements, Springer, Berlin, Heidelberg (1983)

    Google Scholar 

  5. R. J. Adrian: Particle-Imaging Techniques for Experimental Fluid Dynamics, Annu. Rev. Fluid Mech. 23, 261 (1991)

    Article  ADS  Google Scholar 

  6. K. D. Hinsch: Particle Image Velocimetry, in R. S. Sirohi (Ed.): Speckle Metrology, Dekker, New York (1993)

    Google Scholar 

  7. I. Grant: Particle Image Velocimetry, in P. K. Rastogi (Ed.): Optical Measurement Techniques and Applications, Artech House (1997)

    Google Scholar 

  8. H. C. Van der Hulst: Light Scattering by Small Particles, Wiley, New York (1957)

    Google Scholar 

  9. M. A. Northrup, T. J. Kulp, S. M. Angel: Fluorescent Particle Image Velocimetry, Appl. Opt. 30, 3034 (1991)

    Article  ADS  Google Scholar 

  10. D. P. Towers, C. E. Towers, C. H. Buckberry, M. Reeves: Directionally Resolved Two-Phase Flow Measurements Using PIV with Fluorescent Particles and Colour Recording, 9th Int. Symp. Laser Applications in Fluid Mechanics, Lisbon (1998)

    Google Scholar 

  11. B. Hiller, R. K. Hanson: Simultaneous Planar Measurements of Velocity and Pressure Fields in Gas Flows using Laser Induced Fluorescence, Appl. Opt. 27, 33 (1988)

    Article  ADS  Google Scholar 

  12. J. D. Trollinger, M. Rottenkolber, F. Elandalouissi: Development and Application of Holographic Particle Image Velocimetry Techniques for Microgravity Applications, Meas. Sci. Technol. 8, 1573 (1997)

    Article  ADS  Google Scholar 

  13. A. Melling: Tracer Particles and Seeding for Particle Image Velocimetry, Meas. Sci. Technol. 8, 1406 (1997)

    Article  ADS  Google Scholar 

  14. Y. Yeh, H. Cummins: Localised Fluid Measurements with a HeNe Laser Spectrometer, Appl. Phys. Lett. 4, 176 (1964)

    Article  ADS  Google Scholar 

  15. R. L. Bond: Contributions of System Parameters in the Doppler Method of Fluid Velocity Measurement, PhD thesis, Univ. of Arkansas (1968)

    Google Scholar 

  16. M. J. Rudd: A Laser Doppler Velocimeter Employing the Laser as a Mixing Oscillator, J. Phys. E 1, 723 (1968)

    Article  ADS  Google Scholar 

  17. W. T. Mayo: Laser Doppler Flow Meters — A Spectral Analysis, PhD thesis, Georgia Inst. of Technology (1969)

    Google Scholar 

  18. J. W. Goodman: Introduction to Fourier Optics, McGraw-Hill, New York (1968)

    Google Scholar 

  19. M. J. Rudd: A New Theoretical Model for the Laser Doppler Velocimeter J. Phys. E 2, 55 (1969)

    Article  ADS  Google Scholar 

  20. L. Lading: A Fourier Optical Model for the Laser Doppler Velocimeter, Opto-Electron. 4, 385 (1972)

    Article  Google Scholar 

  21. R. N. James, W. S. Babcock, H. S. Seifert: A Laser Doppler Technique for the Measurement of Particle Velocity, AIAA J. 6, 160 (1968)

    Article  ADS  Google Scholar 

  22. J. D. C. Jones: New Opto-Electronic Technologies for Laser Anemometers, in L. Lading, G. Wigley, P. B. Buchave (Ed.): Optical Diagnostics for Flow Processes, Plenum, New York (1994)

    Google Scholar 

  23. G. K. Hargraves, G. Wigley, J. Allen, A. Bacon: Optical Diagnostics and Direct Injection of Liquid Fuel Sprays, in: Optical Methods and Data Processing in Heat and Fluid Flow, City University, London (1998) pp. 121

    Google Scholar 

  24. H. Komine, S. J. Brosnan: Real Time Doppler Global Velocimetry, in: AIAA 29th Aerospace Sciences Meeting, Reno, N. V. (1991), Tech. Dig. paper 91-0337

    Google Scholar 

  25. V. S. S. Chan, A. L. Heyes, D. I. Robinson, J. T. Turner: Iodine Absorption Filters for Doppler Global Velocimetry, Meas. Sci. Technol. 6, 784 (1995)

    Article  ADS  Google Scholar 

  26. R. W. Ainsworth, S. J. Thorpe: The Development of a Doppler Global Velocimeter for Transonic Turbine Applications, in: ASME Gas Turbine and Aero Engine Congress and Exposition, The Hague, (1994), Tech. Dig. paper 94-GT-146

    Google Scholar 

  27. I. Roehle, R. Schodl: Evaluation of the Accuracy of the Doppler Global Technique, in: Optical Methods and Data Processing in Heat and Fluid Flow, City University, London (1994) pp. 121

    Google Scholar 

  28. R. W. Ainsworth, S. J. Thorpe, R. J. Manners: A New Approach to Flow-Field Measurement-A View of Doppler Global Velocimetry Techniques, Int. J. Heat Fluid Flow 18, 116 (1997)

    Article  Google Scholar 

  29. R. L. McKenzie: Measurement Capabilities of Planar Doppler Velocimetry Using Pulsed Lasers, Appl. Opt. 35, 948 (1996)

    Article  ADS  Google Scholar 

  30. J. F. Meyers: Development of Doppler Global Velocimetry as a Flow Diagnostics Tool, Meas. Sci. Technol. 6, 769 (1995)

    Article  ADS  Google Scholar 

  31. T. D. Dudderar, P. G. Simpkins: Laser Speckle Photography in a Fluid Medium, Nature 270, 45 (1977)

    Article  ADS  Google Scholar 

  32. C. J. D. Pickering, N. A. Halliwell: Speckle Photography in Fluid Flows: Signal Recovery with Two-Step Processing, Appl. Opt. 23, 1129 (1984)

    ADS  Google Scholar 

  33. J. M. Burch, J. M. J. Tokarski: Production of Multiple Beam Fringes from Photographic Scatterers, Opt. Acta 15, 101 (1968)

    ADS  Google Scholar 

  34. R. Meynart: Digital Signal Processing for Speckle Flow Velocimetry, Rev. Sci. Instrum. 53, 110 (1982)

    Article  ADS  Google Scholar 

  35. J. M. Coupland, N. A. Halliwell: Particle Image Velocimetry: Rapid Transparency Analysis Using Optical Correlation, Appl. Opt. 27, 1919 (1988)

    Article  ADS  Google Scholar 

  36. Z. Q. Mao, N. A. Halliwell, J. M. Coupland: High Speed Analogue Correlation for PIV Transparency Analysis Using a Ferroelectric Liquid Crystal Spatial Light Modulator, Opt. Lasers Eng. 24, 301 (1996)

    Article  Google Scholar 

  37. R. D. Keane, R. J. Adrian: Optimisation of Particle Image Velocimeters. Part I: Double Pulsed Systems, Meas. Sci. Technol. 1, 1202 (1990)

    Article  ADS  Google Scholar 

  38. R. J. Adrian: Image Shifting Technique to Resolve Directional Ambiguity in Double Pulsed Velocimetry, Appl. Opt. 23, 3855 (1986)

    Article  ADS  Google Scholar 

  39. C. C. Landreth, R. J. Adrian: Electro-Optic Image Shifting for Particle Image Velocimetry, Appl. Opt. 29, 4216 (1988)

    Article  ADS  Google Scholar 

  40. A. Cenedese, G. P. Romano: Colours in PIV, Atlas Vis. 3, 83 (1995)

    Google Scholar 

  41. J. M. Coupland, C. J. D. Pickering, N. A. Halliwell: Particle Image Velocimetry: Theory of Directional Ambiguity Removal Using Holographic Image Separation, Appl. Opt. 26, 1576 (1987)

    Article  ADS  Google Scholar 

  42. M. Reeves, N. J. Lawson, N. A. Halliwell, J. M. Coupland: Particle Image Velocimetry: Image Labelling by Encoding of the Point Spread Function by Application of a Polarisation-Sensitive Pupil Mask, Appl. Opt. 34, 194 (1995)

    Article  ADS  Google Scholar 

  43. C. Gray, C. A. Greated, D. R. McCluskey, W. J. Eason: An Analysis of the Scanning Beam PIV Illumination System, Meas. Sci. Technol. 2, 461 (1991)

    Article  Google Scholar 

  44. M. Reeves: Particle Image Velocimetry applied to Internal Combustion Engine In-Cylinder Flows, PhD thesis, University Loughborough (1995)

    Google Scholar 

  45. D. R. McClusky, T. Jacobsen: Instrumentation for Real Time PIV Measurements, in: Joint ASME, JSME, and EALA Conference, Hilton Head Island, SC (1995)

    Google Scholar 

  46. S. Arndt, C. Heinen, M. Hubel, K. Reymann: Multi-Colour Laser Light Sheet Tomography (MLT) for Recording and Evaluation of Three-Dimensional Turbulent Flow Structures, in: Optical Methods and Data Processing in Heat and Fluid Flow, City University, London (1998) pp. 481

    Google Scholar 

  47. M. P. Arroyo, C. A. Greated: Stereoscopic Particle Image Velocimetry, Meas. Sci. Technol. 2, 1181 (1991)

    Article  ADS  Google Scholar 

  48. N. J. Lawson, J. Wu: Three-Dimensional Particle Image Velocimetry: Experimental Error Analysis of a Digital Angular Stereoscopic System, Meas. Sci. Technol 8, 1455 (1997)

    Article  ADS  Google Scholar 

  49. J. D. Trolinger: Particle Field Holography, Opt. Eng. 14, 383 (1975)

    ADS  Google Scholar 

  50. B. J. Thompson: Holographic Methods for Particle Size and Velocity Measurement — Recent Advances, in: Holographic Optics II: Principles and Practice, Proc. SPIE 1136, 308 (1989)

    Google Scholar 

  51. D. H. Barnhart, R. J. Adrian, G. C. Papen: Phase Conjugate Holographic System for High Resolution Particle Image Velocimetry, Appl. Opt. 33, 7159 (1994)

    Article  ADS  Google Scholar 

  52. J. M. Coupland, N. A. Halliwell: Holographic Displacement Measurements in Fluid and Solid Mechanics: Imunity to Aberrations by Optical Correlation Processing, Proc. R. Soc. 453, 1053 (1997)

    Article  ADS  Google Scholar 

  53. D. H. Barnhart, V. S. S. Chan, C. P. Garner, N. A. Halliwell, J. M. Coupland: Volumetric Three-Dimensional Flow Measurement in IC Engines Using Holographic Recording and Optical Correlation Analysis, in: Optical Methods and Data Processing in Heat and Fluid Flow, City University, London (1998) pp. 51

    Google Scholar 

  54. K. Hinsch, H. Hinrichs, G. Kuhfahl, P. Meinlschmidt: Holographic Recording of 3-D Flow Configurations for Particle Image Velocimetry (PIV), in: ICALEO’90, Laser Inst. America, Orlando, FL (1991) pp. 121–130

    Google Scholar 

  55. C. Tropea: Laser Dopper Anemometry: Recent Developments and Future Challenges, Meas. Sci. Technol. 6, 605 (1995)

    Article  ADS  Google Scholar 

  56. H. Royer: Holography and Particle Image Velocimetry, Meas. Sci. Technol. 8, 1562 (1997)

    Article  ADS  Google Scholar 

  57. R. J. Adrian: Dynamic Ranges of Velocity and Spatial Resolution of Particle Image Velocimetry, Meas. Sci. Technol. 8, 1393 (1997)

    Article  ADS  Google Scholar 

  58. I. Grant, X. Pan: An Investigation of the Performance of Multi-Layer Neural Networks Aplied to the Analysis of PIV Images, Exp. Fluids 19, 159 (1995)

    Google Scholar 

  59. F. Carasone, A. Cenedese, G. Querzoli: Recognition of Partially Overlapped Particle Images Using Kohonen Neural Network, Exp. Fluids 19, 225 (1995)

    Google Scholar 

  60. J. Ko, A. J. Kurdila, J. L. Gilaranz, O. K. Rediniotis: Particle Image Velocimetry via Wavelet Analysis, AIAA J. 36, 1451 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coupland, J.M. (2000). Laser Doppler and Pulsed Laser Velocimetry in Fluid Mechanics. In: Rastogi, P.K. (eds) Photomechanics. Topics in Applied Physics, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48800-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48800-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65990-7

  • Online ISBN: 978-3-540-48800-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics