Skip to main content

Digital Photoelasticity

  • Chapter
  • First Online:
Photomechanics

Part of the book series: Topics in Applied Physics ((TAP,volume 77))

  • 1092 Accesses

Abstract

Photoelasticity is an experimental technique for stress and strain analysis. The method is based upon an optical property called double refraction, or birefringence, of some transparent materials. The birefringence in a stressed photoelastic model is controlled by the state of stress at each point in the model. It is very useful for problems in which stress or strain information is required for extended regions of the structure or member, and particularly for those having complicated geometry, complicated loading conditions, or both. While the traditional areas of application have largely been taken over by numerical techniques, advances in computer technology and digital image processing techniques have made photoelastic analysis more efficient and reliable for solving engineering problems. The main aim of this review is to provide the reader with a brief background of the computer-based digital image processing approaches for evaluation of photoelastic fringe patterns, and for the determination of isochromatic fringe orders and principal stress directions from photoelastic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Dally, W. F. Riley: Experimental Stress Analysis, McGraw-Hill, New York (1991)

    Google Scholar 

  2. H. T. Jessop, F. C. Harris: Photoelasticity: Principals and Methods, Dover, New York (1949)

    Google Scholar 

  3. F. A. Jenkins, H. E. White: Fundamentals of Optics, McGraw-Hill, New York (1976)

    Google Scholar 

  4. A. S. Kobayashi (Ed.): Handbook on Experimental Mechanics, VCH, New York (1993)

    Google Scholar 

  5. J. T. Pindera, G. Cloud: On Dispersion of Birefringence of Photoelastic Materials, Exp. Mech. 6, 470–480 (1966)

    Article  Google Scholar 

  6. L. S. Srinath, A. Sarma: Determination of Integral Fringe Order in Photoelasticity, Exp. Mech. 13, 138–141 (1973)

    Article  Google Scholar 

  7. T. Y. Chen: Digital Determination of Photoelastic Birefringence Using Two Wavelengths, Exp. Mech. 37, 232–236 (1997)

    Article  Google Scholar 

  8. D. Post: Isochromatic Fringe Sharpening and Fringe Multiplication in Photoelasticity, Proc. SESA, 12, 143–157 (1955)

    Google Scholar 

  9. D. J. Bynum: On the Accuracy of Fringe Multiplication with Mirrored Birefringent Coatings, Exp. Mech. 6, 381–382 (1966)

    Article  Google Scholar 

  10. E. A. Patterson: Automated Photoelastic Analysis, Strain 24, 15–20 (1988)

    Article  Google Scholar 

  11. T. Kihara: Automatic Whole-Field Measurement of Principal Stress Directions Using Three Wavelengths, in S. Gomes et al. (Eds.): Recent advances in experimental mechanics, Balkema, Rotterdam (1994) pp. 95–99

    Google Scholar 

  12. J. Cazaro-Alvarez, S. J. Haake, E. A. Patterson: Completely Automated Photoelastic Fringe Analysis, Opt. Lasers Eng. 21, 133–149 (1994)

    Article  Google Scholar 

  13. K. Ramesh, K. S. Rajeev: Comparative Performance Evaluation of Various Fringe Thinning Algorithms in Photoelastic Mechanics, Electron. Imaging 14, 71–83 (1995)

    Article  ADS  Google Scholar 

  14. C. Buckberry, D. Towers: New Approaches to the Full-Field Analysis of Photoelastic Stress Patterns, Opt. Lasers Eng. 24, 415–428 (1996)

    Article  Google Scholar 

  15. J. S. Sirkis, Y. M. Chen, S. Harmeet, A. Y. Cheng: Computerized Optical Fringe Pattern Analysis in Photomechanics: A Review, Opt. Eng. 31, 304–314 (1992)

    Article  ADS  Google Scholar 

  16. R. K. Müller, L. R. Saackle: Complete Automatic Analysis of Photoelastic Fringes, Exp. Mech. 19, 245–251 (1979)

    Article  Google Scholar 

  17. T. Y. Chen, C. E. Taylor: Computerized Fringe Analysis in Photomechanics, Exp. Mech. 29, 323–329. (1989)

    Article  Google Scholar 

  18. B. Umezaki, T. Tamaki, S. Takahashi: Automatic Stress Analysis from Photoelastic Fringes due to Image Processing Using a Personal Computer, SPIE Proc. 504, 127–134 (1984)

    Google Scholar 

  19. K. Ramesh, V. R. Ganesan, S. K. Mullick: Digital Image Processing of Photoelastic Fringes — A New Approach, Exp. Tech. 15, 41–46 (1991)

    Article  Google Scholar 

  20. W. K. Pratt: Digital Image Processing, Wiley-Interscience, New York (1978)

    Google Scholar 

  21. A. Rosenfeld, A. C. KaK: Digital Picture Processing, Academic, New York (1982)

    Google Scholar 

  22. R. C. Gonzalez, P. Wintz: Digital Image Processing, Addison-Wesley, Reading, MA (1987)

    Google Scholar 

  23. A. Ajovalasit, S. Barone, G. Petrucci: Toward RGB Photoelasticity: Full-Field Automated Photoelasticity in White Light, Exp. Mech. 35, 193–200 (1995)

    Article  Google Scholar 

  24. K. Ramesh, S. Deshmukh: Three Fringe Photoelasticity — Use of Color Image Processing Hardware to Automate Ordering of Isochromatics, Strain 32, 79–86 (1996)

    Article  Google Scholar 

  25. D. E. P. Hoy, F. Yu: Fuzzy Logic Approach for Analysis of White-Light Isochromatic Fringes, Post Conf. Proc. SEM VIII, Int. Cong. on Exp Mech., Nashville, TN (1996) pp. 279–284

    Google Scholar 

  26. T. Y. Chen: Digital Fringe Multiplication in Three-Dimensional Photoelasticity, J. Strain Anal. 30, 1–7 (1995)

    Article  Google Scholar 

  27. G. M. Brown, J. L. Sullivan: The Computer-Aided Holophotoelastic Method, Exp. Mech. 30, 135–144 (1990)

    Article  Google Scholar 

  28. S. Mawatari, M. Takashi, Y. Toyoda, T. Kunio: A Single-Valued Representative Function for Determination of Principal Stress Direction in Photoelastic Analysis, Proc. 9th Intl. Conf Exp Mech., Copenhagen, 5, (1990) pp. 2069–2078

    Google Scholar 

  29. E. A. Patterson, Z. F. Wang: Towards Full-Field Automated Photoelastic Analysis of Complex Components, Strain 27, 49–56 (1991)

    Article  Google Scholar 

  30. C. Quan, P. J. Bryanston-cross, T. R. Judge: Photoelasticity Stress Analysis Using Carrier Fringe and FFT Techniques, Opt. Lasers Eng. 18, 79–108 (1993)

    Article  Google Scholar 

  31. Y. Morimoto, Y. MorimotoJr., T. Hayashi: Separation of Isochromatics and Isoclinics Using Fourier Transform, Exp. Tech. 18, 13–17 (1994)

    Article  Google Scholar 

  32. S. L. Toh, S. H. Tang, J. D. Hovanesian: Computerized Photoelastic Fringe Multiplication, Exp. Tech. 14, 21–23 (1990)

    Google Scholar 

  33. X. Liu, Q. Yu: Some Improvements on Digital Fringe-Multiplication Methods, Exp Tech. 17, 26–29 (1993)

    Article  Google Scholar 

  34. T. Y. Chen: Digital Fringe Multiplication of Photoelastic Images — A New Approach, Exp. Tech. 18, 15–18 (1994)

    Article  Google Scholar 

  35. T. Y. Chen, T. F. Chen: Whole-Field Automatic Measurements of Isochromatics and Isoclinics in Photoelastic Coatings, SPIE Proc. 2921, 332–337 (1996)

    Article  ADS  Google Scholar 

  36. A. S. Redner: Photoelastic Measurements by Means of Computer-Assisted Spectral-Contents Analysis, Exp. Mech. 25, 148–153 (1985)

    Article  Google Scholar 

  37. A. S. Voloshin, A. S. Redner: Automated Measurement of Birefringence: Development and Experimental Evaluation of the Technique, Exp. Mech. 29, 252–257 (1989)

    Article  Google Scholar 

  38. S. J. Haake, E. A. Patterson: Photoelastic Analysis of Frozen Stressed Specimens Using Spectral-Contents Analysis, Exp. Mech. 32, 266–272 (1992)

    Article  Google Scholar 

  39. A. S. Voloshin, C. P. Burger: Half-Fringe Photoelasticity — A New Approach to Whole Field Stress Analysis, Exp. Mech. 23, 304–314 (1983)

    Article  Google Scholar 

  40. A. V. S. S. S.R Sarma, S. A. Pillai, G. Subramanian, T. K. Varadan: Computerized Image Processing for Whole Field Determination of Isoclinics and Isochromatics, Exp. Mech. 32, 24–29 (1992)

    Article  Google Scholar 

  41. A. Asundi: Phase Shifting in Photoelasticity, Exp. Tech. 17, 19–23 (1993)

    Article  Google Scholar 

  42. W. C. Wang, T. L. Chen: Half-Fringe Photoelastic Determination of Opening Mode Stress Intensity Factor for Edge Cracked Stripes, Eng. Fract. Mech. 32, 111–122 (1989)

    Article  MATH  Google Scholar 

  43. P. K. Rastogi: Holographic interferometry, Springer, Heidelberg, Berlin (1994)

    Google Scholar 

  44. A. S. Redner: A New Automatic Polariscope System, Exp. Mech. 14, 486–491 (1974)

    Article  Google Scholar 

  45. J. Y. Yao: Digital Image Processing and Isoclinics, Exp. Mech. 30, 264–269 (1990)

    Article  Google Scholar 

  46. T. Y. Chen, C. H. Lin: An Improved Method for Whole-Field Automatic Measurement of Principal Stress Directions, Abst. Proc VIII Intl. Cong. Exp. Mech., (1996) pp 178–179

    Google Scholar 

  47. K. Ramesh, V. Ganapathy: Phase-Shifting Methodologies in Photoelastic Analysis — The Application of Jones Calculus, J. Strain Anal. 31, 423–432 (1996)

    Article  Google Scholar 

  48. T. Y. Chen, J. S. Lin: Computer Aided Photoelastic Stress Analysis of a Variable-Pitch Lead Screw, J. Strain Anal. 32, 157–164 (1997)

    Article  Google Scholar 

  49. W. C. Wang, T. L. Chen, S. H. Lin: Digital Photoelastic Investigation of Transient Thermal Stresses of Two Interacting Defects, J. Strain Anal. 25, 215–228 (1990)

    Article  Google Scholar 

  50. W. C. Wang, J. T. Chen: Theoretical and Experimental Re-examination of a Crack Perpendicular to and Terminating at the Bimaterial Interface, J. Strain Anal. 28, 53–61 (1993)

    Article  Google Scholar 

  51. J. T. Chen, W. C. Wang: Theoretical and Experimental Analysis of an Arbitrary Inclined Semi-infinite Crack Terminated at the Bimaterial Interface, J. Strain Anal. 30, 117–128 (1995)

    Article  Google Scholar 

  52. D. Mallik, C. P. Burger, A. S. Voloshin, E. Matsmoto: Stress Analysis of Adhesive Joints in Composite Structures Through HFP, Compos. Struct. 4, 97–109 (1985)

    Article  Google Scholar 

  53. S. J. Haake, E. A. Patterson, Z. F. Wang: 2D and 3D Separation of Stresses Using Automated Photoelasticity, Exp. Mech. 36, 269–276 (1996)

    Article  Google Scholar 

  54. C. H. Lin: Automated Analysis of Photoelastic Fringe Patterns. MS Thesis, National Cheng Kung University, Tainan (1995)

    Google Scholar 

  55. S. J. Haake, Z. F. Wang, E. A. Patterson: Evaluation of Full Field Automated Photoelastic Analysis Based on Phase Stepping, Exp. Tech. 17, 19–25 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, T.Y. (2000). Digital Photoelasticity. In: Rastogi, P.K. (eds) Photomechanics. Topics in Applied Physics, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48800-6_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-48800-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65990-7

  • Online ISBN: 978-3-540-48800-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics