Skip to main content

Optical Fiber Strain Sensing in Engineering Mechanics

  • Chapter
  • First Online:
Photomechanics

Part of the book series: Topics in Applied Physics ((TAP,volume 77))

Abstract

Several fiber-optic sensors that are proving very useful for measuring the strain on the surface of structural components are described. The emphasis is on commercially available fiber-optic sensor configurations and instrumentation, as well as on many of the techniques required for successful measurements. Sensor fabrication, optical functionality, multiplexing, demodulation instrumentation, sensor packaging and sensor bonding techniques are all covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Culshaw, J. Dankin: Optical Fiber Sensor: Systems and Applications, 1 and 2, Artech House, Norwood, MA (1988)

    Google Scholar 

  2. E. Udd (Ed.): Fiber Optic Sensors: An Introduction For Engineers and Scientists, Wiley, New York (1990)

    Google Scholar 

  3. R. D. Turner, T. Valis, W. Hogg, R. Measures: Fiber-Optic Sensors of Smart Structures, J. Intell. Mater. Syst. Struct. 1, 26 (1990)

    Article  ADS  Google Scholar 

  4. C. E. Lee, W. N. Gibler, R. A. Atkins, H. F. Taylor: In-line Fiber Fabry-Perot Interferometer with High-Reflectivity Internal Mirrors, J. Lightwave Technol. 10, 1376 (1992)

    Article  ADS  Google Scholar 

  5. J. Stone, D. Marcuse: Ultrahigh Finesse Fiber Fabry-Perot Interferometers, J. Lightwave Technol. 4, 382 (1992)

    Article  ADS  Google Scholar 

  6. C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, H. F. Taylor: Optical Fiber Fabry-Perot Sensors for Smart Structures, J. Smart Mater. Struct. 1, 123 (1992)

    Article  ADS  Google Scholar 

  7. C. E. Lee, H. F. Taylor: Interferometric Optical Fiber Sensors Using Internal Mirrors, Electron. Lett. 24, 193 (1988)

    Article  Google Scholar 

  8. L. F. Stokes, M. Chodorow, H. J. Shaw: All Single-Mode Fiber Resonator, Opt. Lett. 7, 288 (1982)

    Article  ADS  Google Scholar 

  9. J. S. Sirkis, H. W. Haslach: Complete Phase-Strain Model for Structurally Embedded Interferometric Optical Fiber Sensors, J. Intell. Mater. Syst. Struct. 2, 3 (1991)

    Article  ADS  Google Scholar 

  10. J. S. Sirkis: Unified Approach to Phase-Strain-Temperature Models for Smart Structure Interferometric Optical Fiber Sensors: Part I, Applications, Opt. Eng. 32, 752 (1993)

    Article  ADS  Google Scholar 

  11. J. S. Sirkis, H. W. Haslach: Interferometric Strain Measurement by Arbitrarily Configured, Surface-Mounted, Optical Fibers, J. Lightwave Technol. 8, 1497 (1990)

    Article  ADS  Google Scholar 

  12. T. Valis, D. Hogg, R. M. Measures: Thermal Apparent Strain Sensitivity of Surface Adhered, Fiber Optic Strain Gauges, Appl. Opt. 31, 7178 (1992)

    Article  ADS  Google Scholar 

  13. D. W. Stowe, D. R. Moore, R. G. Priest: Polarization Fading in Fiber Interferometric Sensors, IEEE Trans. Microw. Theory Tech. MTT-3D, 1632 (1982)

    Article  ADS  Google Scholar 

  14. N. J. Frigo, A. Dandridge, A. B. Tveten: Technique for the Elimination of Polarization Fading in Fiber Interferometers, Electron. Lett. 20, 319 (1984)

    Article  Google Scholar 

  15. K. H. Wanser, N. H. Safar: Remote Polarization Control for Fiber Optic Interferometers, Opt. Lett. 12, 217 (1987)

    Article  ADS  Google Scholar 

  16. A. D. Kersey, M. J. Marrone, A. Dandridge, A. B. Tveten: Optimization and Stabilization of Visibility in Interferometric Fiber Optic Sensors Using Input Polarization Control, J. Lightwave Technol. 6, 1599 (1988)

    Article  ADS  Google Scholar 

  17. A. D. Kersey, M. Marrone, A. Dandridge: Observation of Input Polarization Induced Phase Noise in Interferometric Fiber Optic Sensors, Opt. Lett. 13, 847 (1988)

    Article  ADS  Google Scholar 

  18. R. Kist: Point Sensor Multiplexing Principles, in B. Culshaw, J. Dankin (Ed.): Optical Fiber Sensors: Systems and Application, Vol. 2, Artech House, Norwood, MA (1989)

    Google Scholar 

  19. Kersey: Distributed and Multiplexed Fiber Optic Sensors, in E. Udd (Ed.): Fiber Optic Sensors: An Introduction for Engineers and Scientists, Wiley, New York (1990)

    Google Scholar 

  20. A. Wang, M. S. Miller, D. Sun, K. A. Murphy, R. O. Claus: Advances in the Extrinsic Fabry-Perot Interferometric Optical Fiber Sensors, in: Fiber Optic Smart Structures and Skins V, Boston, Ma, Proc. SPIE 1798, 32 (1992)

    Google Scholar 

  21. K. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus: Quadrature Phase Shifted, Extrinsic Fabry-Perot Optical Fiber Sensors, Opt. Lett. 16, 273 (1991)

    Article  ADS  Google Scholar 

  22. R. O. Claus, A. Gunther, A. Wang, K. Murphy, D. Sun: Extrinsic Fabry-Perot Sensor for Structural Evaluations, in F. Ansari (Ed.): Applications of Fiber Optic Sensors in Engineering Mechnics, ASCE, 60 (1993)

    Google Scholar 

  23. J. W. Dally, W. F. Riley: Experimental Stress Analyis, 3rd edn., McGraw-Hill, New York (1991)

    Google Scholar 

  24. Fiber-Optic Strain Gauges, FISO Technologies Technical Note (1997)

    Google Scholar 

  25. Henriksson, F. Brandt: Design and Manufacture of and EFP Sensor for Embedding in Carbon/Epoxy Composites, in: Proc. 10th Conf. on Optical Fiber Sensors, Glasgow, 472 (1994)

    Google Scholar 

  26. J. S. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, E. J. Friebele, A. D. Kersey, M. A. Putnam: In-Line Fiber Etalon (ILFE) Strain Sensor Fiber Optic, J. Lightwave Technol. 13, 1256 (1995)

    Article  ADS  Google Scholar 

  27. H. Singh, J. S. Sirkis, J. Andrews, R. Pulfrey: Evaluation of Integrated Optic Modulator-Based Detection Schemes for In-Line Fiber Etalon Sensors, J. Lightwave Technol. 13, 1772 (1995)

    Article  ADS  Google Scholar 

  28. J. R. Dunphy, G. Meltz, W. W. Morey: Multi-Function, Distributed Optical Fiber Sensor for Composite Cure and Response Monitoring, in: Fiber Optic Smart Structures and Skins III, San Jose, Ca, Proc. SPIE 1370, 116 (1990)

    Article  ADS  Google Scholar 

  29. R. M. Measures, S. M. Melle, K. Liu: Wavelength Demodulated Bragg Grating Fiber Optic Sensing Systems for Addressing Smart Structure Critical Issues, J. Smart Mater. Struct. 1, 36 (1992)

    Article  ADS  Google Scholar 

  30. W. W. Morey, G. Ball, H. Singh: Applications of Fiber Grating Sensors, in: Fiber Optic and Laser Sensors XIV, Denver Co, Proc. SPIE 2839, 2 (1996)

    Article  ADS  Google Scholar 

  31. G. R. Meltz, W. W. Morey, W. H. Glen: Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method, Opt. Lett. 14, 823 (1989)

    Article  ADS  Google Scholar 

  32. Malo, F. Bilodeau, J. Albert, D. C. Johnson, K. O. Hill, Y. Hibino, M. Abe: Photosensitivity in Optical Fibers and Silica-on-Substrate Waveguides, in: Photosensitivity and Self Organization in Optical Fibers and Wavegudies, Quebec, Canada, Proc. SPIE 2044, 18 (1993)

    Article  Google Scholar 

  33. K. O. Hill, B. Mallo, F. Bilodeau, D. C. Johnson, J. Albert: Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Through a Phase Mask, Appl. Phys. Lett. 62, 1035 (1993)

    Article  ADS  Google Scholar 

  34. R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis: Effects of Diametric Load on Fibre Bragg Gratings Fabricated in Low Birefringece Fibre, Electron. Lett. 32, 1223 (1996)

    Article  Google Scholar 

  35. R. Wagreich, J. S. Sirkis: Distinguishing Fiber Bragg Grating Strain Effects, in: Proc. 11th International Conf. Optical Fiber Sensors, Williamsburg, VA (1997) p. 20

    Google Scholar 

  36. H. Patrick, S. L. Gilbert, A. Lidgard, M. D. Gallagher: Annealing of Bragg Gratings in Hydrogen Loaded Optical Fiber, J. Appl. Phys. 78, 2940 (1995)

    Article  ADS  Google Scholar 

  37. 3M Fiber Bragg Grating Application Note, The Mechanical and Optical Reliability of Fiber Bragg Gratings (1996)

    Google Scholar 

  38. W. W. Morey, J. R. Dunphy, G. Meltz: Multiplexing Fiber Bragg Grating Sensors, in: Proc. Distributed and Multiplexed Fiber Sensors I, Boston MA, Proc. SPIE 1586, 216 (1991)

    Article  ADS  Google Scholar 

  39. K. T. V. Grattan, B. T. Meggit: Optical Fiber Sensor Technology, Chapman & Hall, London (1995)

    Google Scholar 

  40. D. Kersey, T. A. Berkoff, W. W. Morey: Multiplexed Fiber Bragg Grating Strain Sensor System with a Fiber Fabry Perot Wavelength Filter, Opt. Lett. 18, 1370 (1993)

    Article  ADS  Google Scholar 

  41. Melvin et al.: Integrate Vehicle Monitoring (IVHM) for Aerospace Vehciles, in F. K. Chang (Ed.): Structural Health Monitoring: Current Status and Perspectives, Technomic, Lancaster (1997) p. 705

    Google Scholar 

  42. S. S.J. Roberts, R. Davidson: Mechanical Properties of Composite Materils Containing Embedded Fibre Optic Sensors, Fiber Optics Smart Structures and Skins IV, Boston, MA (1991) p. 326

    Google Scholar 

  43. S. E. Baldini, E. Nowakowski, H. G. Smith, E. J. Friebele, M. A. Putnam, R. Rogowski, L. D. Melvin, R. O. Clause, T. Tran, M. Holben: Cooperative Implementation of a High Temperature Acoustic Sensors, Fiber Optics Smart Structures and Skins IV, Boston, MA (1991) p. 125

    Google Scholar 

  44. R. Claus, M. Gunther, A. Wang, K. Murphy: Extrinsic Fabry-Perot Sensor for Strain and COD Measurements from-200 to 900 °C, Smart Mater. Struct. 1, 237 (1992)

    Article  ADS  Google Scholar 

  45. R. Kurkjian, D. Inniss: Understanding Mechanical Properties of Lightguides: A Commentary, Opt. Eng. 30, 681 (1991)

    Article  ADS  Google Scholar 

  46. E. S. R. Sikora: Examination of the Strength Characteristics, Hydrogen Permeation and Electrical Resistance of the Carbon Coating of a Number of ‘Hermetic’ Optical Fibers, in: International Wire and Cabling Symposium, Atlanta, GA (1989) p. 663

    Google Scholar 

  47. M. G. Estep, G. S. Gleasemann: The Effect of Carbon Overcoating on the Mechanical Behavior of Large Flaws, Optical Materials Reliability and Testing: Benign and Adverse Environments, Boston MA, Proc. SPIE 1971, 18 (1992)

    Google Scholar 

  48. R. Kurkjian: Hermetically Coated Fibers, in: Fiber-Optic Materials and Components, San Diego, CA, Proc. SPIE 2290, 237 (1994)

    Article  ADS  Google Scholar 

  49. J. S. Andreassen: Experimental Study on Reliability of Stress Free Aging Effects on Hermetically Coated Fibres, in: Fiber Optic Materials and Components, San Diego CA, Proc. SPIE 2290, 229 (1994)

    Article  ADS  Google Scholar 

  50. W. Habel, B. Hillemeier: Results in Monitoring and Assessment of Damages in Large Steel and Concrete Structures by Means of Fiber Optic Sensors, in: Proc. Smart Systems for Bridges, Structures, and Highways, San Diego CA, Proc. SPIE 2446, 25 (1995)

    Article  ADS  Google Scholar 

  51. W. Habel, M. Hopcke, F. Basedau, H. Polster: The Influence of Concrete and Alkaline Solutions on Different Surfaces of Optical Fibers Sensors, in: 2nd European Conference on Smart Structures and Materials, Institute of Physics, Bristol, Glasgow, UK (1994) p. 168

    Google Scholar 

  52. K. Y. Leung, D. Darmawangsa: Interfacial Changes for Optical Fibers in a Cementitious Environment, unpublished

    Google Scholar 

  53. J. Hayes: Fiber Optics Technicians Manual, Delmar, Albany, New York (1996)

    Google Scholar 

  54. S. Ungar: Fibre Optics: Theory and Applications, Wiley, New York (1989)

    Google Scholar 

  55. Fiber Optic Strain Gauge Installation Guide, FISO Technologies (1997)

    Google Scholar 

  56. Strain Gage Installation with M-Bond 200 and AE-10 Adhesive Systems, Measurements Group Tech. Note

    Google Scholar 

  57. EFP Pre-Installation Surface Preparation Procedures, F&S Technical Note

    Google Scholar 

  58. J. S. Sirkis, C. C. Chang: Embedded Fiber Optic Strain Sensors, in C. Jenkins (Ed.): Manual on Experimental Methods for Mechanical Testing in Composites SEM, Bethel, CT (1998)

    Google Scholar 

  59. D. A. Jackson: Monomode Optical Interferometers for Precision Measurement, J. Phys. 18, 981 (1985)

    ADS  Google Scholar 

  60. K. Liu, R. M. Measures: Signal Processing Techniques for Localized Interferometric Fiber-Optic Strain Sensors, J. Intell. Mater. Syst. Struct. 3, 432 (1992)

    Article  ADS  Google Scholar 

  61. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones: Pseudoheterodyne Detection Scheme for Optical Interferometers, Electron. Lett. 18, 1081 (1982)

    Article  Google Scholar 

  62. R. Sadkowski, C. E. Lee, H. F. Taylor: Multiplexed Interferometric Fiber-Optic Sensors with Digital Signal Processing, Appl. Opt. 34, 5861 (1995)

    Article  ADS  Google Scholar 

  63. D. Lee, A. F. Taylor: A Fiber-Optic Pressure Sensor for Internal Combustion Engines, Sensors, 20 (1998)

    Google Scholar 

  64. C. Belleville, G. Duplain: White-light Interferometric Multimode Fiber-optic Strain Sensor, Opt. Lett. 18, 78 (1993)

    Article  ADS  Google Scholar 

  65. Morin, S. Caron, R. Van Neste, M. H. Edgecombe: Field Monitoring of the Ice Load of an Icebreaker Propeller Blade Using Fibre Optic Strain Gauges, in: Smart Sensing, Processing, and Instrumentation, San Diego CA, Proc. SPIE 2718, 427 (1996)

    Article  ADS  Google Scholar 

  66. K. Kersey, T. A. Berkoff, W. W. Morey: Multiplexed Fiber Bragg Grating Strain Sensor System with a Fiber Fabry Perot Wavelength Filter, Opt. Lett. 18, 370 (1993)

    Article  Google Scholar 

  67. Miller, T. Li, J. Miller, K. Hsu: Multiplexed Fiber Gratings Enhance Mechanical Sensing, Laser Focus World, 119, March (1998)

    Google Scholar 

  68. V. Bhatia, K. Murphy, R. O. Claus: Optical Fiber Based Absolute Extrinsic Fabry-Perot Interferometric Sensing System, Meas. Sci. Technol. 7, 58 (1996)

    Article  ADS  Google Scholar 

  69. K. A. Shinpaugh, R. L. Simpson, A. L. Wicks, S. H. Ha, J. L. Fleming: Signal-processing Techniques for Low Signal-to-Noise Ratio Laser Doppler Velocimetry Signals, Exp. Fluids 12, 319 (1992)

    Article  Google Scholar 

  70. S. M. Melle, K. Liu, R. M. Measures: Practical Fiber-Optic Bragg Grating Strain Gauge System, Appl. Opt. 32, 3601 (1993)

    Article  ADS  Google Scholar 

  71. M. A. Davis, T. A. Berkoff, A. D. Kersey: Demodulator for Fiber Optic Bragg Grating Sensors Based on Fiber Wavelength Division Couplers, Proc. Smart Sensing, Processing and Instrumentation, Orlando FL, Proc. SPIE 2191, 86 (1994)

    Article  ADS  Google Scholar 

  72. A. D. Kersey, T. A. Berkoff, W. W. Morey: High Resolution Fiber Grating Based Strain Sensor with Interferometric Wavelength Shift Detection, Electron. Lett. 28, 236 (1992)

    Article  ADS  Google Scholar 

  73. L. Melvin: Integrated Vehicle Health Monitoring (IVHM) for Space Vehicles, in: Proceedings of International Workshop on Structure Health Monitoring, Stanford, CA (1997), p. 705

    Google Scholar 

  74. G. Askins, M. A. Putnam, E. J. Friebele: Instrumentation for Interrogating Many-element Fiber Bragg Grating Arrays, in: Smart Sensing, Processing, and Instrumentation, Proc. SPIE 2444, 257 (1995)

    Article  ADS  Google Scholar 

  75. S. Chen, Y. Hu, L. Zhang, I. Bennion: Digital Wavelength and Spatial Domain Multiplexing of Bragg Grating Optical Fiber Sensors, in: Proc. 11th International Conference Optical Fiber Sensors, Sapporo. Japan (1996) p. 100

    Google Scholar 

  76. Y. Hu, S. Chen: Multiplexing Bragg Gratings Using Combined Wavelength and Spatial Division Techniques with Digital Resolution Enhancement, Electro. Lett. 33, 1973 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sirkis, J.S. (2000). Optical Fiber Strain Sensing in Engineering Mechanics. In: Rastogi, P.K. (eds) Photomechanics. Topics in Applied Physics, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48800-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-48800-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65990-7

  • Online ISBN: 978-3-540-48800-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics