Skip to main content

Failure of Traditional Models

  • Chapter
Physics of Fractal Operators

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

The fractal concept was formally introduced into the physical sciences by Beniot Mandelbrot over 20 years ago and has since then captured the imagination of a generation of scientists. Mandelbrot had, of course, been working on the development of the idea for over a decade before he was finally willing to expose his brainchild to the scrutiny of the scientific community at large. His first monograph on fractals [16] brings together the experimental and physical arguments that undermine the traditional picture of the physical world. Since the time of Lagrange (1759) it has been accepted that celestial mechanics and physical phenomena are, by and large, described by smooth, continuous, and unique functions. This belief is part of the conceptual infrastructure of the physical sciences. The evolution of physical processes is modeled by systems of dynamical equations and the solutions to such equations are continuous and dif-ferentiable at all but a finite number of points. Therefore the phenomena being described by these equations were thought to have these properties of continuity and differentiability as well. Thus, the solutions to the equations of motion such as the Euler-Lagrange equations, or Hamilton’s equations, are analytic functions and such functions were thought to represent physical phenomena in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. J. Abraham and C. D. Shaw, Dynamics-The Geometry of Behavior, Part 1 (1982), Aerial Press, Santa Cruz, CA.

    Google Scholar 

  2. R. J. Abraham and C. D. Shaw, Dynamics-The Geometry of Behavior, Part 2 (1983), Aerial Press, Santa Cruz, CA.

    Google Scholar 

  3. R. J. Abraham and C. D. Shaw, Dynamics-The Geometry of Behavior, Part 3 (1985), Aerial Press, Santa Cruz, CA.

    Google Scholar 

  4. R. J. Abraham and C. D. Shaw, Dynamics-The Geometry of Behavior, Part 4 (1988), Aerial Press, Santa Cruz, CA.

    MATH  Google Scholar 

  5. M. F. Barnsley, Fractals Are Everywhere, Academic Press, Boston (1988).

    Google Scholar 

  6. M. Berry, Diffractals, J. Phys. A: Math. Gen. 12, 781–797 (1979).

    Article  ADS  Google Scholar 

  7. M. Berry and Z. V. Lewis, On the Weierstrass-Mandelbrot fractal function, Proc. Roy. Soc. Lond. A 370, 459–484 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E. Broda, Ludwig Boltzmann, Man-Physicist-Philosopher, Ox Bow Press, Woodbridge (1983).

    Google Scholar 

  9. R. Brown, Phil Mag. 6, 161 (1829).

    Google Scholar 

  10. R. Brown, Edinburgh J. Sei. 1, 314 (1829).

    Google Scholar 

  11. K. Falconer, Fractal Geometry, John Wiley, New York (1990).

    MATH  Google Scholar 

  12. J. Feder, Fractals, Plenum, New York (1988).

    MATH  Google Scholar 

  13. A. Gemant, A method of analyzing experimental results obtained from elas-toviscous bodies, Physics 7, 311 (1936).

    Article  ADS  Google Scholar 

  14. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition, Academic, New York (1980).

    MATH  Google Scholar 

  15. K. M. Kolwankar, Studies of fractal structures and processes using methods of the fractional calculus, unpublished thesis, University of Pune (1997).

    Google Scholar 

  16. K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiate functions and dimensions, Chaos 6, 505 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. K. M. Kolwankar and A. D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys. 48, 49 (1997).

    Article  ADS  Google Scholar 

  18. B. B. Mandelbrot and J. W. van Ness, Fractional Brownian motions, fractional noise and applications, SIAM Rev. 10, 422 (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).

    MATH  Google Scholar 

  20. B. B. Mandelbrot, Fractals, form, chance and dimension, W.H. Freeman, San Francisco (1977).

    MATH  Google Scholar 

  21. R. D. Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Am. Math. Soc. 298, 793 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Meakin, Fractals, scaling and growth far from equilibrium, Cambridge Nonlinear Science Series 5, Cambridge University Press, Cambridge, MA (1998).

    MATH  Google Scholar 

  23. E. Ott, Chaos in Dynamical Systems, Cambridge University Press, New York (1993).

    MATH  Google Scholar 

  24. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York (1974).

    MATH  Google Scholar 

  25. J. Perrin, Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5–114: Translated by F. Soddy as Brownian Movement and Molecular Reality, Taylor and Francis, London.

    Google Scholar 

  26. L. F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A 110, 709–737 (1926).

    Article  ADS  Google Scholar 

  27. G. F. Roach, Green’s Functions, second edition, Cambridge University Press, Cambridge, MA (1982).

    MATH  Google Scholar 

  28. A. Rocco and B. J. West, Fractional calculus and the evolution of fractal phenomena, Physica A 265, 535 (1999).

    Article  Google Scholar 

  29. M. Schroeder, Fractals, Chaos, Power Laws, W.H. Freeman, San Francisco (1991).

    MATH  Google Scholar 

  30. G. W. Scott Blair, B. C. Veinoglou and J. E. Caffyn, Limitations of the Newtonian time scale in relation to non-equilibrium rheological states and a theory of quasi-proper ties, Proc. Roy. Soc. Ser. A 187, 69 (1947).

    ADS  Google Scholar 

  31. D. Sornette, Discrete scale invariance and complex dimensions, Phys. Rep. 297, 239–270 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  32. B. J. West, Fractal Physiology and Chaos in Medicine, Studies of Nonlinear Phenomena in the Life Sciences Vol. 1, World Scientific, Singapore (1990).

    MATH  Google Scholar 

  33. B. J. West and W. Deering, Fractal Physiology for Physicists: Levy Statistics, Phys. Rep. 246, 1–100 (1994).

    Article  ADS  Google Scholar 

  34. B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences vol. 7, World Scientific, Singapore (1999).

    MATH  Google Scholar 

  35. B. J. West, M. Bargava and A. L. Goldberger, Beyond the principle of similitude: renormalization in the bronchial tree, J. Appl. Physiol. 60, 189 (1986).

    Article  Google Scholar 

  36. A. Zygmund, Trigonometric Series, vols. I and II combined, second edition, Cambridge University Press, Cambridge, MA (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

West, B.J., Bologna, M., Grigolini, P. (2003). Failure of Traditional Models. In: Physics of Fractal Operators. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21746-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21746-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3054-5

  • Online ISBN: 978-0-387-21746-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics