Skip to main content

The Ant in the Gurge Metaphor

  • Chapter
Physics of Fractal Operators

Part of the book series: Institute for Nonlinear Science ((INLS))

  • 587 Accesses

Abstract

The ant in the labyrinth problem posed by de Gennes in 1976 concerned the description of the random movement of an entity (the ant) in a disordered system (the labyrinth) [8] and was a metaphor for the general problem of transport in disordered media. The general physical problem was to represent the evolution of conduction electrons in amorphous materials, phase dislocations in polymer gels, and myriad other phenomena. On the other hand, the ant as metaphor, like every other localized quantity in physics, has its corresponding nonlocal, wavelike aspect. Material properties, such as the distribution of grain sizes in polycrystalhne materials, the degree of homogeneity, the existence of microscopic cracks, inclusions, twin boundaries, and dislocations, all affect fracture micromechanics and wave propagation. To describe the motion of this generalized ant through such disordered, but scaling, materials we change de Gennes’ image to that of an ant in a gurge, that is, an ant in a kind of turbulent flow field. In terms of this modified image we construct an equation that in one limit models fractional diffusion and in another limit models fractional wave propagation. This new equation is the fractional generalization of the telegrapher’s equation. But in addition to these physical processes we also use this metaphor to describe the influence of scaling on the observables in other complex phenomena as well.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. Allegrini, M. Buiatti, P. Grigolini and B. J. West, Fractional Brown-ian motion as a nonstationary process: An alternative paradigm for DNA sequences, Phys. Rev. E 57, 4558 (1998).

    Article  ADS  Google Scholar 

  2. P. Allegrini, P. Grigolini and B. J. West, Dynamical approach to Lévy processes, Phys. Rev. E 54, 4760–4767 (1996).

    Article  ADS  Google Scholar 

  3. D. R. Bickel and B. J. West, J. Mol. Evol. 47, 551 (1998).

    Article  Google Scholar 

  4. M. Berry, Diffractals, J. Phys. A: Math. Gen. vol. 12, 781–797 (1979).

    Article  ADS  Google Scholar 

  5. J. -P. Bouchaud and A. Georges, Phys. Rept. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  6. B. V. Chirikov, Phys. Rept. 52, 265 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev. E 53, 4191 (1996).

    Article  ADS  Google Scholar 

  8. P. G. de Gennes, La Recherche 7, 919 (1976).

    Google Scholar 

  9. W. G. Glöckle and T. F. Nonnenmacher, Macromolecules 24, 6426 (1991).

    Article  ADS  Google Scholar 

  10. W. G. Glöckle and T. F. Nonnenmacher, A fractional Calculus approach to self-similar protein dynamics, Biophys. J. 68, 46–53 (1995).

    Article  ADS  Google Scholar 

  11. W. G. Glöckle and T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes, J. Stat. Phys. 71 (1993) 741.

    Article  ADS  MATH  Google Scholar 

  12. W. G. Glöckle and T. F. Nonnenmacher, Fractional relaxation and the time-temperature superposition principle, Rheol. Acta 33 (1994) 337.

    Article  Google Scholar 

  13. J. M. Hausdorff, C. -K. Peng, Z. Ladin, J. Y. Wei and A. L. Goldberger, J. Appl. Physiol 78, 349 (1995).

    Google Scholar 

  14. S. Havlin and D. Ben-Avraham, Adv. in Phys. 36, 695 (1987).

    Article  ADS  Google Scholar 

  15. R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore (1999).

    Google Scholar 

  16. R. Hilfer, Classification theory for an equilibrium phase transitions, Phys. Rev. E 48, 2466 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Jano-Lasino, The Renormalization Group: A Probabilistic View, Nuovo Cimento 29B, 99–119 (1975).

    ADS  Google Scholar 

  18. M. Jaroniec, Reac. Kinet. Catal Lett. 8, 425 (1978)

    Article  Google Scholar 

  19. P. Jörgi, D. Sornette and M. Blank, Fine structure and complex exponents in power-law distributions from random maps, Phys. Rev. E 57, 120 (1998).

    Article  ADS  Google Scholar 

  20. D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. L. P. Kadanoff, Fractals: Where’s the beef?, Physics Today, 6 (Feb.) (1986).

    Google Scholar 

  22. R. Metzler, E. Barkai and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation, Phys. Rev. Lett. 82, 3563–3567 (1999).

    Article  ADS  Google Scholar 

  23. R. Metzler, E. Barkai and J. Klafter, From continuous time random waks to the fractional Fokker-Planck equation, Phys. Rev. E 61, 132–138 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  24. E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., second edition, North-Holland Personal Library, North-Holland, Amsterdam, (1987).

    Google Scholar 

  25. E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., first edition (1979).

    Google Scholar 

  26. E.W. Montroll and M.F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, 1–121, E.W. Montroll and J.L. Lebowitz, eds., North-Holland, Amsterdam (1983).

    Google Scholar 

  27. T. J. Osler, An integral analogue of Taylor’s series and its use in computing Fourier transforms, Math. Comp. 26, 449–460 (1972).

    MathSciNet  MATH  Google Scholar 

  28. C. K. Peng, S. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Long-range correlations in nucleotide sequences, Nature 356, 168 (1992).

    Article  ADS  Google Scholar 

  29. C. K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. G. Stanley and A. L. Goldberger, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70, 1343 (1993).

    Article  ADS  Google Scholar 

  30. L. F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A 110, 709–737 (1926).

    Article  ADS  Google Scholar 

  31. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York (1993).

    MATH  Google Scholar 

  32. W. R. Schneider and W. Wyss, J. Math. Phys. 30, 134 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. M. F. Shlesinger, B. J. West and J. Klafter, Lévy dynamics for enhanced diffusion: an application to turbulence, Phys. Rev. Lett. 58, 1100–1103 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  34. A. J. F. Siegert, Phys. Rev. 81, 617 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36, 823 (1930).

    Article  ADS  Google Scholar 

  36. B. J. West and V. Seshadri, Linear systems with Lévy fluctuations, Physica A 113, 203–216 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  37. B. J. West, Sensing scaled scintillations, J. Opt. Soc. Am. 7, 1074 (1990).

    Article  ADS  Google Scholar 

  38. B. J. West and W. Deering, Fractal Physiology for Physicists: Lévy Statistics, Phys. Repts. 246, 1–100 (1994).

    Article  ADS  Google Scholar 

  39. B. J. West and P. Grigolini, Fractional differences, derivatives and fractal time series, in Applications of Fractional Calculus in Physics, ed. R. Hilfer, World Scientific, Singapore (1998).

    Google Scholar 

  40. B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zucherman and B. D. Levine, Fractal fluctuations in transcranial Doppler signals, Phys. Rev. E 59, 1 (1999).

    Article  Google Scholar 

  41. B. J. West and L. Griffin, Allometric control, inverse power laws and human gait, Chaos, Solitons & Fractals 10, 1519 (1999).

    Article  ADS  MATH  Google Scholar 

  42. B. J. West and L. Griffin, Allometric Control of Human Gait, Fractals 6, 101 (1998).

    Article  Google Scholar 

  43. B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences vol. 7, World Scientific, Singapore (1999).

    MATH  Google Scholar 

  44. B. J. West and T. Nonnenmacher, An ant in a Gurge, Phys. Lett. A 278, 255 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zucherman and B. D. Levine, Fractal fluctuations in Cardiac Time Series, Physica A 270, 522 (1999).

    Article  ADS  Google Scholar 

  46. G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics, Chaos 7, 159 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

West, B.J., Bologna, M., Grigolini, P. (2003). The Ant in the Gurge Metaphor. In: Physics of Fractal Operators. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21746-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21746-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3054-5

  • Online ISBN: 978-0-387-21746-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics