Skip to main content

PET: Physics, Instrumentation, and Scanners

  • Chapter
PET

Abstract

Positron emission tomography (PET) is a nuclear imaging technique that uses the unique decay characteristics of radionuclides that decay by positron emission. These radionuclides are produced in a cyclotron and are then used to label compounds of biological interest. The labeled compound (typically 1013–1015 labeled molecules) is introduced into the body, usually by intravenous injection, and is distributed in tissues in a manner determined by its biochemical properties. When the radioactive atom on a particular molecule decays, a positron is ejected from the nucleus, ultimately leading to the emission of high-energy photons that have a good probability of escaping from the body. A PET scanner consists of a set of detectors that surround the object to be imaged and are designed to convert these high-energy photons into an electrical signal that can be fed to subsequent electronics. In a typical PET scan, 106 to 109 events (decays) will be detected. These events are corrected for a number of factors and then reconstructed into a tomographic image using mathematical algorithms. The output of the reconstruction process is a three-dimensional (3-D) image volume, where the signal intensity in any particular image voxel* is proportional to the amount of the radionuclide (and, hence, the amount of the labeled molecule to which it is attached) in that voxel. Thus, PET images allow the spatial distribution of radiolabeled tracers to be mapped quantitatively in a living human. By taking a time sequence of images, the tissue concentration of the radiolabeled molecules as a function of time is measured, and with appropriate mathematical modeling, the rate of specific biological processes can be determined (Chapter 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General references and further reading

  • Basic Nuclear Physics: The Atomic Nucleus. R.D. Evans. McGraw-Hill, New York, 1955.

    Google Scholar 

  • Detectors and Detector Physics: Radiation Detection and Measurement. G.F. Knoll. 3rd Edition. John Wiley, New York, 2000.

    Google Scholar 

  • Physics of Nuclear Medicine: Physics in Nuclear Medicine. S.R. Cherry, J.A. Sorenson, M.E. Phelps. 3rd Edition. W.B. Saunders, New York, 2003.

    Google Scholar 

  • Image Reconstruction: Principles of Computerized Tomography. A.C. Kak and M. Slaney. Society for Industrial and Applied Mathematics, 2001.

    Google Scholar 

  • 3-D PET Data Acquisition and Image Reconstruction: The Theory and Practice of 3D PET. Eds: B. Bendriem and D.W. Townsend. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

    Google Scholar 

  • Image Processing: Handbook of Medical Imaging: Processing and Analysis. I.N. Bankman. Academic Press, San Diego, 2000.

    Google Scholar 

Cited references

  1. Evans RD. The Atomic Nucleus. New York: McGraw-Hill; 1955.

    Google Scholar 

  2. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975; 16: 210–233.

    PubMed  CAS  Google Scholar 

  3. Derenzo SE. Precision measurement of annihilation point spread distributions for medically important positron emitters. Proceedings of the 5th International Conference on Positron Annihilation, Sendai, Japan, Eds. Hasiguti, RR and Fujiwara, K. The Japan Insitute of Metals, 1979, 819–823.

    Google Scholar 

  4. Palmer MR, Brownell GL. Annihilation density distribution calculations for medically important positron emitters. IEEE Trans Med Imag. 1992; 11: 373–378.

    CAS  Google Scholar 

  5. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999; 44: 781–799.

    PubMed  CAS  Google Scholar 

  6. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A simulation study of a method to reduce positron annihilation spread distributions using a strong magnetic field in positron emission tomography. IEEE Trans Nucl Sci. 1986; 33: 597–600.

    Google Scholar 

  7. Hammer BE, Christensen NL, Heil BG. Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phy. 1994; 21: 1917–1920.

    CAS  Google Scholar 

  8. Wirrwar A, Vosberg H, Herzog H, Halling H, Weber S, Muller-Gartner HW. 4.5 tesla magnetic field reduces range of high-energy positrons-potential implications for positron emission tomography. IEEE Trans Nucl Sci. 1997; 44: 184–189.

    CAS  Google Scholar 

  9. Haber SF, Derenzo SE, Uber D. Application of mathematical removal of positron range blurring in positron emission tomography. IEEE Trans Nucl Sci. 1990; 37: 1293–1299.

    CAS  Google Scholar 

  10. Derenzo SE. Mathematical removal of positron range blurring in high resolution tomography. IEEE Trans Nucl Sci. 1986; 33: 565–569.

    Google Scholar 

  11. Knoll GF. Radiation Detection and Measurement. 3rd ed. New York: John Wiley und Sons; 2000.

    Google Scholar 

  12. Hamamatsu. Photomultiplier Tube: Principle to Application: Hamamatsu Photonics K.K.; 1994.

    Google Scholar 

  13. Suffert M. Silicon photodiode readout of scintillators and associated electronics. Nucl Inst Meth. 1992; A322: 523–528.

    Google Scholar 

  14. Renker D. Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging. Nucl Inst Meth. 2002; A486: 164–169.

    CAS  Google Scholar 

  15. Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986; 33: 460–463.

    Google Scholar 

  16. Wong W-H, Uribe J, Hicks K, Hu G. An analog decoding BGO block detector using circular photomultipliers. IEEE Trans Nucl Sci. 1995; 42: 1095–1101.

    Google Scholar 

  17. Karp IS, Muehllehner G. Performance of a position-sensitive scintillation detector. Phys Med Biol 1985; 30: 643–655.

    PubMed  CAS  Google Scholar 

  18. Freifelder R, Karp JS, Geagan M, Muehllehner G. Design and performance of the HEAD PENN-PET scanner. IEEE Trans Nucl Sci. 1994; 41: 1436–1440.

    Google Scholar 

  19. Shao Y, Silverman RW, Cherry SR. Evaluation of Hamamatsu R5900 series PMTs for readout of high-resolution scintillator arrays. Nucl Inst Meth. 2000; A454: 379–388.

    CAS  Google Scholar 

  20. Vaquero JJ, Seidel J, Siegel S, Gandler WR, Green MV. Performance characteristics of a compact position-sensitive LSO detector module. IEEE Trans Med Imag. 1998; 17: 967–978.

    CAS  Google Scholar 

  21. Watanabe M, Omura T, Kyushima H, Hasegawa Y, Yamashita T. A compact position-sensitive detector for PET. IEEE Trans Nucl Sci. 1995; 42: 1090–1094.

    Google Scholar 

  22. Cherry SR, Shao Y, Siegel S, et al. Optical fiber readout of scintillator arrays using a multi-channel PMT: a high resolution PET detector for animal imaging. IEEE Trans Nucl Sci. 1996; 43: 1932–1937.

    Google Scholar 

  23. Saoudi A, Pepin CM, Dion F, et al. Investigation of depth-of-interaction by pulse shape discrimination in multicrystal detectors read out by avalanche photodiodes. IEEE Trans Nucl Sci. 1999; 46: 462–467.

    CAS  Google Scholar 

  24. Schmand M, Eriksson L, Casey ME, et al. Performance results of a new DOI detector block for a High Resolution PET-LSO Research Tomograph HRRT. IEEE Trans Nucl Sci. 1998; 45: 3000–3006.

    Google Scholar 

  25. Huber JS, Moses WW, Derenzo SE, et al. Characterization of a 64 channel PET detector using photodiodes for crystal identification. IEEE Trans Nucl Sci. 1997; 44: 1197–1201.

    CAS  Google Scholar 

  26. Huber JS, Moses WW, Andreaco MS, Loope M, Melcher CL, Nutt R. Geometry and surface treatment dependence of the light collection from LSO crystals. Nucl Inst Meth. 1999;A437:374–380.

    Google Scholar 

  27. Pichler BJ, Boning G, Rafecas M, et al. Feasibility study of a compact high resolution dual layer LSO-APD detector module for positron emission tomography. Proceedings of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference, 1998; Toronto, ON. IEEE Press, Piscataway NJ, 1998, 1199–1203.

    Google Scholar 

  28. Shao Y, Silverman RW, Farrell R, et al. Design studies of a high resolution PET detector using APD arrays. IEEE Trans Nucl Sci. 2000; 47: 1051–1057.

    Google Scholar 

  29. Lecomte R, Cadorette J, Rodrigue S, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci. 1996; 43: 1952–1957.

    Google Scholar 

  30. Ziegler SI, Pichler BJ, Boening G, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med. 2001; 28: 136–143.

    PubMed  CAS  Google Scholar 

  31. Bateman JE, Connolly JF. A hybrid MWPC gamma ray detecting system for applications in nuclear medicine. Nucl Inst Meth. 1978; A156: 27–31.

    CAS  Google Scholar 

  32. Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci. 1999; 46: 468–473.

    Google Scholar 

  33. Charpak G, Imrie D, Jeanjean J, et al. A new approach to positron emission tomography. Eur J Nucl Med. 1989; 15: 690–693.

    PubMed  CAS  Google Scholar 

  34. Duxbury DM, Ott RI, Flower MA, et al. Preliminary results from the new large-area PETRRA positron camera. IEEE Trans Nucl Sci. 1999; 46: 1050–1054.

    Google Scholar 

  35. Marsden PK, Ott RI, Bateman JE, Cherry SR, Flower MA, Webb S. The performance of a multiwire proportional chamber positron camera for clinical use. Phys Med Biol. 1989; 34: 1043–1062.

    PubMed  CAS  Google Scholar 

  36. Townsend D, Frey P, Jeavons A, et al. High density avalanche chamber (HIDAC) positron camera. J Nucl Med. 1987; 28: 1554–1562.

    PubMed  CAS  Google Scholar 

  37. Bruyndonckx P, Liu X, Tavernier S, Zhang S. Performance study of a 3D small animal PET scanner based on BaF2 crystals and a photo sensitive wire chamber. Nucl Instr Meth. 1997; A392: 407–413.

    CAS  Google Scholar 

  38. Bohm C, Eriksson L, Bergstrom M, Litton J, Sundman R, Singh M. A computer assisted ring detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci. 1978;NS-25:624–637.

    Google Scholar 

  39. Burgiss SG, Byars LG, Jones WF, Casey ME. High resolution and high speed positron emission tomography data acquisition. IEEE Trans Nucl Sci. 1986; 33: 489–491.

    Google Scholar 

  40. Dahlbom M, Reed J, Young J. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning, IEEE Trans Nucl Sci. 2001; 48: 1465–1469.

    Google Scholar 

  41. Hoffman EJ, Huang S-C, Plummer D, Phelps ME. Quantitation in positron emission computed tomography. VI. Effect of nonuniform resolution. J Comp Assist Tomogr. 1982; 6: 987–999.

    CAS  Google Scholar 

  42. Cherry SR, Dahlbom M, Hoffman EJ. 3D PET using a conventional multislice tomo-graph without septa. J Comp Assist Tomogr. 1991; 15: 655–668.

    CAS  Google Scholar 

  43. Townsend DW, Geissbuhler A, Defrise M, et al. Fully 3-dimensional reconstruction for a PET camera with retractable septa. IEEE Trans Med Imag. 1991; 10: 505–512.

    CAS  Google Scholar 

  44. Andersson JL. A rapid and accurate method to realign PET scans utilizing image edge information. J Nucl Med. 1995; 36: 657–669.

    Google Scholar 

  45. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med. 1993; 34: 143–150.

    PubMed  CAS  Google Scholar 

  46. Xu M, Luk WK, Cutler PD, Digby WM. Local threshold for segmented attenuation correction of PET imaging of the thorax. IEEE Trans Nucl Sci. 1994; 41: 1532–1537.

    Google Scholar 

  47. Xu M, Cutler PD, Luk WK. Adaptive, segmented attenuation correction for whole-body PET imaging. IEEE Trans Nucl Sci. 1996; 43: 331–336.

    Google Scholar 

  48. Meikle SR, Hutton BF, Bailey DL, Hooper PK, Fulham MJ. Accelerated EM reconstruction in total body PET: potential for improving tumor detectability. Phys Med Biol. 1994; 39: 1689–1704.

    PubMed  CAS  Google Scholar 

  49. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994; 13: 601–609.

    CAS  Google Scholar 

  50. Hoffman EJ, Guerrero TM, Germano G, Digby WM, Dahlbom M. PET system calibration and corrections for quantitative and spatially accurate images. IEEE Trans Nucl Sci. 1989; 36: 1108–1112.

    Google Scholar 

  51. Defrise M, Townsend DW, Bailey D, Geissbuhler A, Michel C, Jones T. A normalization technique for 3D PET data. Phys Med Biol. 1991; 36: 939–952.

    PubMed  CAS  Google Scholar 

  52. Casey ME, Gadagkar H, Newport D. A component based method for normalization in volume PET. Proceedings of the 1995 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine,Aix-les-Bains, France, 1995, 67–71.

    Google Scholar 

  53. Badawi RD, Lodge MA, Marsden PK. Algorithms for calculating detector efficiency normalization coefficients for true coincidences in 3D PET. Phys Med Biol. 1998; 43: 189–205.

    PubMed  CAS  Google Scholar 

  54. Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK. A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol. 2000; 45: 3253–3266.

    PubMed  CAS  Google Scholar 

  55. Bergstrom M, Litton J, Eriksson L, Bohm C, Blomqvist G. Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr. 1982; 6: 365–372.

    PubMed  CAS  Google Scholar 

  56. Siegel S, Dahlbom M. Implementation and evaluation of a calculated attenuation corection for PET. IEEE Trans Nucl Sci. 1992; 39: 1117–1121.

    CAS  Google Scholar 

  57. Huesman R, Derenzo SE, Cahoon JL, et al. Orbiting transmission source for positron tomography. IEEE Trans Nucl Sci. 1988; 35: 735–739.

    CAS  Google Scholar 

  58. Ranger N, Thompson CJ, Evans AC. The application of a masked orbiting transmission source for attenuation correction in PET. J Nucl Med. 1989; 30: 1056–1058.

    PubMed  CAS  Google Scholar 

  59. Carson RE, Daube-Witherspoon ME, Green MV. A method for postinjection PET transmission measurements with a rotating source. J Nucl Med. 1988; 29: 1558–1567.

    PubMed  CAS  Google Scholar 

  60. Meikle SR, Bailey DL, Hooper PK, et al. Simultaneous emission and transmission measurements for attenuation correction in whole-body PET. JNucl Med. 1995; 36: 1680–1688.

    CAS  Google Scholar 

  61. Thompson CJ, Ranger N, Evans AC, Gjedde A. Validation of simultaneous PET emission and transmission scans. J Nucl Med. 1991; 32: 154–160.

    PubMed  CAS  Google Scholar 

  62. deKemp RA, Nahmias C. Attenuation correction in PET using single photon transmission measurement. Med Phys. 1994; 21: 771–778.

    PubMed  CAS  Google Scholar 

  63. Karp JS, Muehllehner G, Qu H, Yan XH. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol. 1995; 40: 929–944.

    PubMed  CAS  Google Scholar 

  64. Watson CC, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole-body PET. Proceedings of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference, Toronto, ON. IEEE Press, Piscataway NJ, 1998, 1694–1701.

    Google Scholar 

  65. Bailey DL, Livieratos L, Jones WF, Jones T. Strategies for accurate attenuation correction with single photon transmission measurements in 3D PET. Proceedings of the 1997 IEEE Nuclear Science Symposium and Medical Imaging Conference, Albuquerque, NM. IEEE Press, New York, 1997, 1009–1013.

    Google Scholar 

  66. Stearns CW. Scatter correction method for 3D PET using 2D fitted Gaussian functions. J Nucl Med. 1995; 36: 105 P.

    Google Scholar 

  67. Cherry SR, Huang S-C. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci. 1995; 42: 1174–1179.

    Google Scholar 

  68. Bergstrom M, Eriksson L, Bohm C, Blomqvist G, Litton J. Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comp Assist Tomogr. 1983; 7: 42–50.

    CAS  Google Scholar 

  69. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol. 1996; 41: 2757–2774.

    PubMed  CAS  Google Scholar 

  70. Watson CC, Newport D, Casey ME, deKemp RA, Beanlands RS, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci. 1997; 44: 90–97.

    Google Scholar 

  71. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol. 1996; 41: 153–176.

    PubMed  CAS  Google Scholar 

  72. Holdsworth CH, Levin CS, Farquhar TH, Dahlbom M, Hoffman EJ. Investigation of accelerated Monte Carlo techniques for PET simulation and 3D PET scatter correction. IEEE Trans Nucl Sci. 2001; 48: 74–81.

    Google Scholar 

  73. Levin CS, Dahlbom M, Hoffman EJ. A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci. 1995; 42: 1181–1185.

    Google Scholar 

  74. Hoffman EJ, Huang S-C, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: IV. Effect of accidental coincidences. J Comput Assist Tomogr. 1981; 5: 391–400.

    PubMed  CAS  Google Scholar 

  75. Williams CW, Crabtree MC, Burgiss SG. Design and performance characteristics of a positron emission computed axial tomograph-ECAT-II. IEEE Trans Nucl Sci. 1979; 26: 619–627.

    Google Scholar 

  76. Eriksson L, Wienhard K, Dahlbom M. A simple data loss model for positron camera systems. IEEE Trans Nucl. Sci 1994; 41: 1566–1570.

    CAS  Google Scholar 

  77. Germano G, Hoffman EJ. Investigation of count rate and dead time characteristics of a high resolution PET system. J Comp Assist Tomogr. 1988; 12: 836–846.

    CAS  Google Scholar 

  78. Germano G, Hoffman EJ. A study of data loss and mispositioning due to pileup in 2-D detectors in PET. IEEE Trans Nucl Sci. 1990; 37: 671–675.

    Google Scholar 

  79. Leahy RM, Clackdoyle R. Computed Tomography. Handbook of Image and Video Processing. San Diego: Academic Press; 2000.

    Google Scholar 

  80. Kak AC, Slaney M. Principles of Computerized Tomography. Society for Industrial and Applied Mathematics; 2001.

    Google Scholar 

  81. Bracewell RN. The Fourier Transform and Its Applications. 3rd ed. Boston: McGraw-Hill; 2000.

    Google Scholar 

  82. Brooks RA, Sank VJ, Talbert AJ, Di Chiro G. Sampling requirements and detector motion for positron emission tomography. IEEE Trans Nucl Sci. 1979; 26: 2760–2763.

    Google Scholar 

  83. Daube-Witherspoon ME, Muehllehner G. Treatment of axial data in three-dimensional PET. J Nucl Med. 1987; 28: 1717–1724.

    PubMed  CAS  Google Scholar 

  84. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imag. 1997; 16: 145–158.

    CAS  Google Scholar 

  85. Matej S, Karp JS, Lewitt RM, Becher AJ. Performance of the Fourier rebinning algorithm for PET with large acceptance angles. Phys Med Biol. 1998; 43: 787–795.

    PubMed  CAS  Google Scholar 

  86. Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci. 1989; 36: 964–968.

    CAS  Google Scholar 

  87. Colsher JG. Fully three-dimensional positron emission tomography. Phys Med Biol. 1980; 25: 103–115.

    PubMed  CAS  Google Scholar 

  88. Bendriem B, Townsend DW. The Theory and Practice of 3D PET. Dordrecht, The Netherlands: Kluwer; 1998.

    Google Scholar 

  89. Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med. 1997; 24: 797–808.

    PubMed  CAS  Google Scholar 

  90. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994; 13: 601–609.

    CAS  Google Scholar 

  91. Shepp LA, Vardi Y. Maximum likelihood recosntruction for emission tomography. IEEE Trans Med Imag. 1982; 1: 113–122.

    CAS  Google Scholar 

  92. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr. 1984; 8: 306–316.

    PubMed  CAS  Google Scholar 

  93. Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol. 2001; 46: R1 - R45.

    PubMed  CAS  Google Scholar 

  94. Bacharach SL, Douglas MA, Carson RE, et al. 3-Dimensional registration of cardiac positron emission tomography attenuation scans. J Nucl Med. 1993; 34: 311–321.

    PubMed  CAS  Google Scholar 

  95. Hoh CK, Dahlbom M, Harris G, et al. Automated iterative 3-dimensional registration of positron emission tomography images. J Nucl Med. 1993; 34: 2009–2018.

    PubMed  CAS  Google Scholar 

  96. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. A fully automatic multimodality image registration algorithm. J Comp Assist Tomogr. 1995; 19: 615–623.

    CAS  Google Scholar 

  97. Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. J Comp Assist Tomogr. 1993; 17: 536–546.

    CAS  Google Scholar 

  98. Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization-linear scaling and nonlinear warping of functional brain images. J Nue! Med. 1994; 35: 1528–1537.

    CAS  Google Scholar 

  99. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Plastic Transformation of PET Images. J Comp Assist Tomogr. 1991; 15: 634–639.

    CAS  Google Scholar 

  100. Andersson JLR, Thurfjell L. Implementation and validation of a fully automatic system for intra-and interindividual registration of PET brain scans. J Comp Assist Tomogr. 1997; 21: 136–144.

    CAS  Google Scholar 

  101. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Comparing functional (PET) images-the assessment of significant change. J Cereb Blood Flow Metabol. 1991; 11: 690–699.

    CAS  Google Scholar 

  102. Thurfjell L, Bohm C, Bengtsson E. Surface reconstruction from volume data used for creating an adaptable functional brain atlas. IEEE Trans Nucl Sci. 1995; 42: 1383–1387.

    Google Scholar 

  103. Minoshima S, Koeppe RA, Frey KA, Ishihara M, Kuhl DE. Stereotactic PET atlas of the human brain-aid for visual interpretation of functional brain images. J Nucl Med. 1994; 35: 949–954.

    PubMed  CAS  Google Scholar 

  104. Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: I. Effect of object size. J Comput Assist Tomogr. 1979; 3: 299–308.

    PubMed  CAS  Google Scholar 

  105. Videen TO, Perlmutter JS, Mintun MA, Raichle ME. Regional correction of positron emission tomography data for the effects of cerebral atrophy. J Cereb Blood Flow Metab. 1988; 8: 662–670.

    PubMed  CAS  Google Scholar 

  106. Müller-Gärtner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992; 12: 571–583.

    PubMed  Google Scholar 

  107. Meltzer CC, Leal JP, Mayberg HS, Wagner HN, Frost JJ. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comp Assist Tomogr. 1990; 14: 561–570.

    CAS  Google Scholar 

  108. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998; 39: 904–911.

    PubMed  CAS  Google Scholar 

  109. National Electrical Manufacturers Association. NEMA Standards Publication NU 2–2001: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA: National Electrical Manufacturers Association; 2001.

    Google Scholar 

  110. National Electrical Manufacturers Association NEMA Standards Publication NU 2–1994: Performance Measurements of Positron Emission Tomographs. Washington, DC: National Electrical Manufacturers Association; 1994.

    Google Scholar 

  111. Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al. Performance standards in positron emission tomography. J Nucl Med. 1991; 32: 2342–2350.

    PubMed  CAS  Google Scholar 

  112. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med. 1991; 18: 374–379.

    PubMed  CAS  Google Scholar 

  113. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990; 37: 783–788.

    Google Scholar 

  114. Lewellen TK, Kohlmyer SG, Miyaoka RS, Kaplan MS. Investigation of the performance of the General Electric Advance Positron Emission Tomograph in 3D mode. IEEE Trans Nucl Sci. 1996; 43: 2199–2206.

    Google Scholar 

  115. Brix G, Zaers J, Adam L-E, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med. 1997; 38: 1614–1623.

    PubMed  CAS  Google Scholar 

  116. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994; 35: 1398–1406.

    PubMed  CAS  Google Scholar 

  117. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W-D. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr. 1992; 16: 804–813.

    PubMed  CAS  Google Scholar 

  118. Wienhard K, Dahlbom M, Eriksson L, et al. The ECAT EXACT HR: Performance of a new high resolution positron scanner. J Comp Assist Tomogr. 1994; 18: 110–118.

    CAS  Google Scholar 

  119. Thompson CJ, Yamamoto YL, Meyer E. Positome II: a high efficiency positron imaging system for dynamic brain studies. IEEE Trans Nucl Sci. 1979; 26: 582–586.

    Google Scholar 

  120. Knesaurek K. New developments in PET instrumentation: Quo vadis PET ? J Nucl Med. 2001; 42: 1831–1832.

    PubMed  CAS  Google Scholar 

  121. Townsend DW, Wensveen M, Byars LG, et al. A rotating PET scanner using BGO block detectors-Design, performance and applications. J Nucl Med. 1993; 34: 1367–1376.

    PubMed  CAS  Google Scholar 

  122. Smith RJ, Adam LE, Karp JS. Methods to optimize whole body surveys with the C-PET camera. Proceedings of the 1999 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, WA. IEEE, Piscataway, NJ, 1999, 1197–1201.

    Google Scholar 

  123. Anger HO, Rosenthal DJ. Scintillation camera and positron camera. In: Medical Radioisotope Scanning. Vienna, Austria: IAEA, 1959, 163–168.

    Google Scholar 

  124. Nellemann P, Hines H, Braymer W, Muehllehner G, Geagan M. Performance characteristics of a dual head SPECT scanner with PET capability. Proceedings of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA. IEEE, Piscataway, NJ, 1999, 1197–1201.

    Google Scholar 

  125. Schmand M, Eriksson L, Casey ME, Wienhard K, Flugge G, Nutt R. Advantages using pulse shape discrimination to assign the depth of interaction information (DOI) from a multi layer phoswich detector. IEEE Trans Nucl Sci. 1999; 46: 985–990.

    Google Scholar 

  126. Spinks TJ, Jones T, Bloomfield PM, et al. Physical characteristics of the ECAT EXACT3D positron tomograph. Phys Med Biol. 2000; 45: 2601–2618.

    PubMed  CAS  Google Scholar 

  127. Wienhard K, Schmand M, Casey ME, et al. The ECAT HRRT: Performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002; 49: 104–110.

    Google Scholar 

  128. Surti S, Karp JS, Freifelder R, Liu F. Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci. 2000; 47: 1030–1036.

    CAS  Google Scholar 

  129. Moses WW, Virador PRG, Derenzo SE, Huesman RH, Budinger TF. Design of a high-resolution, high-sensitivity PET camera for human brains and small animals. IEEE Trans Nucl Sci. 1997; 44: 1487–1491.

    CAS  Google Scholar 

  130. Uribe J, Baghaei H, Li HD, et al. Basic imaging performance characteristics of a variable field of view PET camera using quadrant sharing detector design. IEEE Trans Nucl Sci. 1999; 46: 491–497.

    Google Scholar 

  131. Flanagan FL, Dehdashti F, Siegel BA. PET in breast cancer. Semin Nucl Med. 1998; 28: 290–302.

    PubMed  CAS  Google Scholar 

  132. Raylman RR, Majewski S, Wojcik R, et al. The potential role of positron emission mammography for detection of breast cancer. A phantom study. Med Phys. 2000; 27: 1943 1954.

    Google Scholar 

  133. Thompson CJ, Murthy K, Picard Y, Weinberg IN, Mako R. Positron emission mammography (PEM)-a promising technique for detecting breast cancer. IEEE Trans Nucl Sci. 1995; 42: 1012–1017.

    Google Scholar 

  134. Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH. Results of preliminary clinical trials of the positron emission mammography system PEM-I: A dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000; 41: 1851–1858.

    PubMed  CAS  Google Scholar 

  135. Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol. 2001; 11: 1968–1974.

    PubMed  CAS  Google Scholar 

  136. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000; 41: 1369–1379.

    PubMed  CAS  Google Scholar 

  137. Kluetz PG, Meltzer CC, Villemagne MD, et al. Combined PET/CT imaging in oncology: impact on patient management. Clin Pos Imag. 2001; 3: 223–230.

    Google Scholar 

  138. Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. JNucl Med. 2000; 41: 1364–1368.

    CAS  Google Scholar 

  139. Shao Y, Cherry SR, Farahani K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci. 1997; 44: 1167–1171.

    CAS  Google Scholar 

  140. Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J. 2001; 42: 219–232.

    PubMed  CAS  Google Scholar 

  141. Watanabe M, Okada H, Shimizu K, et al. A high resolution animal PET scanner using compact PS-PMT detectors. IEEE Trans Nucl Sci. 1997; 47: 1277–1282.

    Google Scholar 

  142. Bloomfield PM, Rajeswaran S, Spinks TJ, et al. The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol. 1995; 40: 1105–1126.

    PubMed  CAS  Google Scholar 

  143. Seidel J, Vaquero JJ, Barbosa F, Lee IJ, Cuevas C, Green MV. Scintillator identification and performance characteristics of LSO and GSO PSPMT detector modules combined through common X and Y resistive dividers. IEEE Trans Nucl Sci. 2000; 47: 1640–1645.

    Google Scholar 

  144. Del Guerra A, Di Domenico G, Scandola M, Zavattini G. YAP-PET: a small animal positron emission tomograph based on YAP:Ce finger crystals. Proceedings of the 1997 IEEE Nuclear Science Symposium and Medical Imaging Conference, Albuquerque, NM. IEEE, New York, 1997, 1640–1643.

    Google Scholar 

  145. Weber S, Terstegge A, Herzog H, et al. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity. IEEE Trans Med Imag. 1997; 16: 684–689.

    CAS  Google Scholar 

  146. Cherry SR, Shao Y, Silverman RW, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 1997; 44: 1161–1166.

    CAS  Google Scholar 

  147. Chatziioannou AF, Cherry SR, Shao Y, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999; 40: 1164–1175.

    PubMed  CAS  Google Scholar 

  148. Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol. 1998; 43: 1001–1013.

    PubMed  CAS  Google Scholar 

  149. Tai Y-C, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol. 2001; 46: 1845–1862.

    PubMed  CAS  Google Scholar 

  150. Knoess C, Siegel S, Smith A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med. 2003; 30: 734–747.

    Google Scholar 

  151. Tai YC, Chatziioannou AF, Yang Y et al. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol. 2003; 48: 1519–1537.

    PubMed  Google Scholar 

  152. Correia JA, Burnham CA, Kaufman D, Fischman AJ. Development of a small animal PET imaging device with resolution approaching 1 mm. IEEE Trans Nucl Imag. 1999; 46: 631–635.

    Google Scholar 

  153. Miyaoka RS, Kohlmyer SG, Lewellen TK. Performance characteristics of micro crystal element (MiCE) detectors. IEEE Trans Nucl Sci. 2001; 48: 1403–1407.

    Google Scholar 

  154. Goertzen AL, Meadors AK, Silverman RW, Cherry SR. Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol. 2002; 47: 4315–4328.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Cherry, S.R., Dahlbom, M. (2004). PET: Physics, Instrumentation, and Scanners. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics