Skip to main content

Oncological Applications of FDG-PET

  • Chapter
PET

Abstract

In 1924, the German biochemist Otto Warburg and colleagues published their observations on the metabolism of cancer cells.1 They posed the fundamental question of the metabolism of tumors as follows: “If the carcinoma problem is attacked in its relation to the physiology of metabolism, the first question is: In what way does the metabolism of growing tissue differ from the metabolism of resting tissue? The prospects of finding an answer are good.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warburg O, Posener K, Negelein E. VIII. The metabolism of cancer cells. Biochem Zeitschr. 1924; 152: 129–169.

    Google Scholar 

  2. Flexner S, Jobling S. Studies upon a transplantable rat tumour. Monographs on Medical and Allied Subjects. Rockefeller Institute for Medical Research, New York, 1910, pp. 1–51.

    Google Scholar 

  3. Weber G. Enzymology of cancer cells (Part 1). N Engl J Med. 1977; 296: 541–555.

    PubMed  CAS  Google Scholar 

  4. Weber G. Enzymology of cancer cells (Part 2). N Engl J Med. 1977; 296: 541–555.

    PubMed  CAS  Google Scholar 

  5. Flier J, Mueckler M, Usher P, Lodish H. Elevated levels of glucose transport and transporter messenger RNA are induced by ras and sarc oncogenes. Science. 1987; 235: 1492 1495.

    Google Scholar 

  6. Weber G, Banaejee G, Morris H. Comparative chemistry of hepatomas 5123. Cancer Res. 1961; 21: 933–937.

    PubMed  CAS  Google Scholar 

  7. Phelps M, Hoffmann E, Mullani N, TerPogossian M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975; 16: 210224.

    Google Scholar 

  8. Valk PE, Pounds TR, Tesar RD, Hopkins DM, Haseman MK. Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol. 1996; 23: 737–743.

    PubMed  CAS  Google Scholar 

  9. Silverman D, Hoh C, Seltzer M, et al. Evaluating tumor biology and oncological disease with positron emission tomography. Semin Radiat Oncol. 1998; 8: 183–196.

    PubMed  CAS  Google Scholar 

  10. Conti PS, Lilien DL, Hawley K, et al. PET and 18–F-FDG in oncology: a clinical update. Nucl Med Biol. 1996; 23: 717–735.

    PubMed  CAS  Google Scholar 

  11. Rigo P. Positron emission tomography using 18F-fluorodeoxyglucose in oncology. Bull Mem Acad R Med Belg. 1997; 152: 353–361.

    PubMed  CAS  Google Scholar 

  12. Phelps M. Positron emission tomography provides molecular imaging of biological processes. PNAS. 2000; 97: 9226–9233.

    PubMed  CAS  Google Scholar 

  13. Rodriguez M, Rehn S, Ahlstrom H, Sundström C, Glimelius B. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med. 1995; 36: 1790–1796.

    PubMed  CAS  Google Scholar 

  14. Feine U, Lietzenmeier R, Hanke J, et al. Fluorine-18–FDG and iodine-131–iodide uptake in thyroid cancer. J Nucl Med. 1996; 37: 1468–1472.

    PubMed  CAS  Google Scholar 

  15. Seltzer M, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol. 1999; 162: 1322–1328.

    PubMed  CAS  Google Scholar 

  16. Gambhir S, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG-PET literature. J Nucl Med. 2001; 42: 1S - 71S.

    PubMed  CAS  Google Scholar 

  17. Kunze W, Baehre M, Richter E. PET with dual head coincidence camera: spatial resolution, scatter fraction, and sensitivity. J Nucl Med. 2000; 41: 1067–1074.

    PubMed  CAS  Google Scholar 

  18. Delbeke D, Patton J, Martin W, Sandler MP. FDG PET and dual head gamma camera positron coincidence detection imaging of suspected malignancies and brain disorders. J Nucl Med. 1999; 40: 110–117.

    PubMed  CAS  Google Scholar 

  19. Landoni C, Gianolli L, Lucignani G, et al. Comparison of dual head coincidence PET versus ring PET in tumor patients. J Nucl Med. 1999; 40: 1617–1622.

    PubMed  CAS  Google Scholar 

  20. Langen K, Braun U, Kops E, et al. The influence of plasma glucose levels on fluorine18–fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med. 1993; 34: 355–359.

    PubMed  CAS  Google Scholar 

  21. Lindholm P, Minn H, Lekinen-Salo S, et al. Influence of the blood glucose concentration on FDG uptake in cancer-a PET study. J Nucl Med. 1993; 34: 1–6.

    PubMed  CAS  Google Scholar 

  22. Crippa F, Gavazzi C, Bozzetti F, et al. The influence of blood glucose levels on [18F] fluorodeoxyglucose PET imaging. Tumori. 1997; 83: 748–752.

    PubMed  CAS  Google Scholar 

  23. Wahl RL, Hutchins G, Buchsbaum D, et al. 18F-2–deoxy-2–fluoro-D-glucose uptake into human tumor xenografts. Cancer. 1991; 67: 1544–1550.

    PubMed  CAS  Google Scholar 

  24. Fischman A, Alpert NM. FDG-PET in oncology: There’s more to it than looking at pictures. J Nucl Med. 1993; 34: 6–11.

    PubMed  CAS  Google Scholar 

  25. Dahlbom M, Hoffman EJ, Hoh CK, et al. Whole-body positron emission tomography: Part I. Methods and performance characteristics. J Nucl Med. 1992; 33: 1191–1199.

    PubMed  CAS  Google Scholar 

  26. Meikle S, Hutton B, Bailey D, Hooper P, Fulham M. Accelerated EM reconstruction in total-body PET: potential for improving tumor detectability. Phys Med Biol. 1994; 39: 1689–1704.

    PubMed  CAS  Google Scholar 

  27. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med. 1993; 34: 143–50.

    PubMed  CAS  Google Scholar 

  28. Lowe V, Hoffman J, DeLong D, Patz E, Coleman R. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med. 1994; 35: 1771–1776.

    PubMed  CAS  Google Scholar 

  29. Gupta N, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodule using fluorine-l8–FDG and PET. JNucl Med. 1996; 37: 943–948.

    CAS  Google Scholar 

  30. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography. J Comput Assist Tomogr. 1979; 3: 299–308.

    PubMed  CAS  Google Scholar 

  31. Khouri N, Meziane M, Zerhouni E, Fishman E, Siegelman S. The solitary pulmonary nodule: Assessment, diagnosis and management. Chest. 1987; 91: 128–133.

    PubMed  CAS  Google Scholar 

  32. Keagy B, Starek P, Murray G, et al. Major pulmonary resection for suspected but unconfirmed malignancy. Ann Thorac Surg. 1984; 38: 314–316.

    PubMed  CAS  Google Scholar 

  33. Siegelman S, Zerhouni E, Leo R, Khouri N, Stitik F. CT of the solitary pulmonary nodule. AIR. 1980; 135: 1–13.

    CAS  Google Scholar 

  34. Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med. 1990; 31: 1927–1933.

    PubMed  CAS  Google Scholar 

  35. Dewan N, Gupta N, Redepennig L, Phalen J, Frick M. Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules; potential role in evaluation and management. Chest. 1993; 104: 997–1002.

    PubMed  CAS  Google Scholar 

  36. Patz E, Lowe V, Hoffman J, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology. 1993; 188: 487–490.

    PubMed  Google Scholar 

  37. Duhaylongsod F, Lowe V, Patz E, et al. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography. J Thorac Cardiovasc Surg. 1995; 110: 130–140.

    PubMed  CAS  Google Scholar 

  38. Knight S, Delbeke D, Stewart J, Sandler M. Evaluation of pulmonary lesions with FDGPET: comparison of findings in patients with and without a history of prior malignancy. Chest. 1996; 109: 982–988.

    PubMed  CAS  Google Scholar 

  39. Bury T, Dowlati A, Paulus P, et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging. Eur Respir J. 1996; 9: 410–414.

    PubMed  CAS  Google Scholar 

  40. Worsely D, Celler A, Adam M, et al. Pulmonary nodules: differential diagnosis using 18F-fluorodeoxyglucose single photon emission tomography. AIR. 1996; 168: 771–774.

    Google Scholar 

  41. Lowe V, Fletcher J, Gobar L, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol. 1998; 16: 1075–1084.

    PubMed  CAS  Google Scholar 

  42. Dewan N, Shehan C, Reeb S, et al. Likelihood of malignancy in a solitary pulmonary nodule: comparison of Bayesian analysis and results of FDG-PET scan. Chest. 1997; 112: 416–422.

    PubMed  CAS  Google Scholar 

  43. Gambhir SS, Shepherd JE, Shah BD, Hart E, Hoh CK, et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules. J Clin Oncol. 1998; 16: 2113–2125.

    PubMed  CAS  Google Scholar 

  44. American Cancer Society. Cancer facts and figures. Atlanta, GA, 1996; pp. 12–13.

    Google Scholar 

  45. Mountain C. A new international staging system for lung cancer. Chest. 1986; 89: 225.

    Google Scholar 

  46. Mountain C. Value of the new TNM staging system for lung cancer. Chest. 1989; 97: 935.

    Google Scholar 

  47. McKenna R, Libshitz H, Mountain C, McMurtey M. Roentgenographic evaluation of mediastinal lymph nodes for pre-operative assessment in lung cancer. Chest. 1985; 88: 2 06–210.

    Google Scholar 

  48. Arita T, Kuramitsu T, Kawamura M. Bronchogenic carcinoma: incidence of metastases to normal sized lymph nodes. Thorax. 1995; 50: 1267–1269.

    PubMed  CAS  Google Scholar 

  49. Webb R, Gatsonis C, Zerhouni E, et al. CT and MRI imaging in staging non-small cell bronchogenic carcinoma: report of the radiologie diagnostic oncology group. Radiology. 1991; 178: 705–713.

    PubMed  CAS  Google Scholar 

  50. Dillemans B, Deneffe G, Verschakelen J, Decramer M. Value of computed tomography and mediastinoscopy in pre-operative evaluation of mediastinal nodes in non-small cell lung cancer. Eur J Cardio-thorac Surg. 1994; 8: 37–42.

    CAS  Google Scholar 

  51. Dwamena B, Sonnan S, Angobaldo J, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s-meta analytic comparison of PET and CT. Radiology. 1999; 213: 530–536.

    PubMed  CAS  Google Scholar 

  52. Fujiwara T, Matsuszawa T, Ito M. F-18–deoxy-D-glucose positron emission tomography of human lung tumors. Cyclotron and Radio-isotope Center Annual Report. 1984: 264–269.

    Google Scholar 

  53. Nolop K, Rhodes C, Brudin L, Beaney R, Krausz T, et al. Glucose utilization by human pulmonary neoplasms. Cancer. 1987; 60: 2682–2689.

    PubMed  CAS  Google Scholar 

  54. Scott W, Schwabe J, Gupta N, et al. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]Fluorodeoxyglucose. Ann Thorac Surg. 1994; 58: 698–703.

    PubMed  CAS  Google Scholar 

  55. Scott W, Gobar L, Terry J, Dewan N, Sunderland J. Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg. 1996; 111: 642–648.

    PubMed  CAS  Google Scholar 

  56. Sazon D, Santiago S, Soo Hoo G, et al. Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med. 1996; 153: 417–421.

    PubMed  CAS  Google Scholar 

  57. Sasaki M, Ichiya Y, Kuwabara Y, et al. The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with x-ray computed tomography. Eur J Nucl Med. 1996; 23: 741–747.

    PubMed  CAS  Google Scholar 

  58. Steinert H, Hauser M, Aleman F, et al. Non-small cell lung cancer: nodal staging with FDG-PET versus correlative lymph node mapping and sampling. Radiology. 1997; 202: 441–446.

    PubMed  CAS  Google Scholar 

  59. Patz E, Lowe V, Goodman P, Herndon J. Thoracic nodal staging with PET imaging with 18–FDG in patients with bronchogenic carcinoma. Chest. 1995; 108: 1617–1621.

    PubMed  Google Scholar 

  60. Guhlmann A, Storck M, Kotzerke J, et al. Lymph node staging in non-small cell lung cancer: evaluation by [18F]FDG positron emission tomography (PET). Thorax. 1997; 52: 438–441.

    PubMed  CAS  Google Scholar 

  61. Marom E, McAdams H, Erasmus J, et al. Staging non-small cell lung cancer with whole body PET. Radiology. 1999; 212: 803–809.

    PubMed  CAS  Google Scholar 

  62. Vansteenkiste J, Mortelmans L. FDG-PET in the locoregional lymph node staging of non-small cell lung cancer: a comprehensive review of the Leuven lung cancer group experience. Mol Imag Biol. 1999; 4: 223–231.

    Google Scholar 

  63. Chin R, Ward R, Keyes J, et al. Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med. 1995; 152: 2090–2096.

    PubMed  Google Scholar 

  64. Weng E, Tran L, Rege S. Accuracy and clinical impact of mediastinal lymph node staging with FDG-PET imaging in potentially resectable lung cancer. Am J Clin Onc. 2000; 23: 47–52.

    CAS  Google Scholar 

  65. Magnani P, Carretta A, Rizzo G, et al. FDG/PET and spiral CT image fusion for mediastinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg. 1999; 40: 741–748.

    CAS  Google Scholar 

  66. Vansteenkiste J, Stroobants S, De Leyn P, et al. Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol. 1998; 16: 2142–2149.

    PubMed  CAS  Google Scholar 

  67. Beyer T, Townsend D, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000; 41: 1369–1379.

    PubMed  CAS  Google Scholar 

  68. 68. Patton J, Delbeke D, Sandler M. Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J Nucl Med. 1996;41:1364–1368.

    Google Scholar 

  69. Valk P, Pounds T, Hopkins D, et al. Staging non-small cell lung cancer by whole body positron emission tomographic imaging. Ann Thorac Surg. 1995; 60: 1573–1582.

    PubMed  CAS  Google Scholar 

  70. Weder W, Schmid R, Bruchhaus H, et al. Detection of extrathoracic metastases by positron emission tomography in lung cancer. Ann Thorac Surg. 1998; 66: 886–892.

    PubMed  CAS  Google Scholar 

  71. Bury T, Dowlati A, Paulus P, et al. Whole-body 18FDG positron emission tomography in the staging of non-small cell lung cancer. Eur Respir J. 1997; 10: 2529–2534.

    PubMed  CAS  Google Scholar 

  72. Pieterman R, van Putten J, Meuzelaar J, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000; 343: 254–261.

    PubMed  CAS  Google Scholar 

  73. Saunders C, Dussek J, O’Doherty J. Evaluation of fluorine-18–fluorodeoxyglucose whole body positron emission tomography imaging in the staging of lung cancer. Ann Thorac Surg. 1999; 67: 790–797.

    PubMed  CAS  Google Scholar 

  74. Lewis P, Griffin S, Marsden P, et al. Whole-body 18F-fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet. 1994; 344: 1265–1266.

    PubMed  CAS  Google Scholar 

  75. Seltzer M, Valk P, Wong C, et al. The impact of PET on the management of lung cancer: the referring physician’s perspective. J Nucl Med. 2002; 43: 752–756

    PubMed  Google Scholar 

  76. Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J. Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med. 1996; 37: 1428–1436.

    PubMed  CAS  Google Scholar 

  77. Jabour B, Choi Y, Hoh C, et al. Extracranial head and neck: PET imaging with 2–[F18]fluoro-2–deoxy-D-glucose and MR Imaging correlation. Radiology. 1993; 186: 27–35.

    PubMed  CAS  Google Scholar 

  78. Rege S, Maas A, Chaiken L, et al. Use of positron emission tomography with fluorodeoxyglucose in patients with extracranial head and neck cancers. Cancer. 1994; 73: 3047–3058.

    PubMed  CAS  Google Scholar 

  79. Benchaou M, Lehmann W, Slosman D, et al. The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. Acta Otolaryngol. 1996; 116: 332–335.

    PubMed  CAS  Google Scholar 

  80. Adam S, Baum R, Stuckensen T, Bitter K, Hör G. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med. 1998; 25: 1255–1260.

    Google Scholar 

  81. Paulus P, Sambon A, Vivegnis D, et al. 18FDG PET for the assessment of primary head and neck tumors: clinical, computed tomography, and histopathological correlation in 38 patients. Laryngoscope. 1998; 108: 1578–1583.

    PubMed  CAS  Google Scholar 

  82. Faber L, Benard F, Matchay M, et al. Detection of recurrent head and neck squamous cell carcinomas after radiation therapy with 2–18F-fluoro-2–deoxy-D-glucose positron emission tomography. Laryngoscope. 1999; 109: 970–975.

    Google Scholar 

  83. Lowe V, Kim H, Boyd J, et al. Primary and recurrent early stage laryngeal cancer: Preliminary results of 2–[fluorine 18]fluoro-2–deoxy-D-glucose PET imaging. Radiology. 1999; 212: 799–802.

    PubMed  CAS  Google Scholar 

  84. Minn H, Paul R, Ahonen A. Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18 fluorodeoxyglucose. J Nucl Med. 1989; 29: 1521–1525.

    Google Scholar 

  85. Hubner K, Thie J, Smith G, et al. Clinical utility of FDG-PET in detecting head and neck tumors: a comparison of diagnostic methods and modalities. Clin Posit Imag. 2000; 3: 7–16.

    Google Scholar 

  86. Lapela M, Grenman R, Kurki T, et al. Head and neck cancer: Detection of recurrence with PET and 2– [F-18] fluoro-2–deoxy-D-glucose. Radiology. 1995; 197: 205–211.

    PubMed  CAS  Google Scholar 

  87. Lowe V, Dunphy F, Varvares M, et al. Evaluation of chemotherapeutic response in patients with advanced head and neck cancer using [F-18] fluorodeoxyglucose positron emission tomography. Head Neck. 1997; 19: 666–674.

    PubMed  CAS  Google Scholar 

  88. Lowe V, Boyd J, Dunphy F, et al. Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol. 2000; 18: 651–658.

    PubMed  CAS  Google Scholar 

  89. Sakamoto H, Nakai Y, Ohagshi Y, et al. Monitoring of response to radiotherapy with Fluorine-18 deoxyglucose PET of head and neck squamous cell carcinomas. Acta Otolaryngol (Stockh). 1998; 538: 254–260.

    CAS  Google Scholar 

  90. Peng N, Yen S, Liu W, Tsay D, Liu R. Evaluation of the effect of radiation therapy to nasopharyngeal carcinoma by positron emission tomography with 2–[F-181fluoro-2–deoxy-D-glucose. Clin Posit Imag. 2000; 3: 51–56.

    Google Scholar 

  91. Hundahl S, Fleming I, Fremgen A, Menck H. A national cancer database report on 53,856 cases of thyroid carcinoma treated in the US. Cancer. 1998; 83: 2638–2648.

    PubMed  CAS  Google Scholar 

  92. Altenvoerde G, Lerch H, Kuwert T, et al. Positron emission tomography with F-18 deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbeck’s Arch Surg. 1998; 383: 160–163.

    PubMed  CAS  Google Scholar 

  93. Schlüter B, Grimm-Riepe C, Beyer W, et al. Histological verification of positive fluorine-18 fluorodexoyglucose findings in patients with differentiated thyroid cancer. Langenbeck’s Arch Surg. 1998; 383: 187–189.

    PubMed  Google Scholar 

  94. Conti PS, Durski J, Bacqai F, Grafton S, Singer P. Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid. 1999; 9: 797–804.

    PubMed  CAS  Google Scholar 

  95. Yeo J, Chung J, So Y, et al. F-18 fluorodeoxyglucose positron emission tomography as presurgical evaluation modality for I-131 scan-negative thyroid carcinoma patients with local recurrence in cervical lymph nodes. Head Neck. 2000; 23: 94–103.

    Google Scholar 

  96. Wang W, Macapinlac HA, Larson S, et al. 18F-2–fluoro-2–deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131–I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab. 1999; 84: 2291–2302.

    PubMed  CAS  Google Scholar 

  97. Grünwald F, Kälicke T, Feine U, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicenter study. Eur J Nucl Med. 1999; 26: 1547–1552.

    PubMed  Google Scholar 

  98. Grünwald F, Menzel C, Bender H, et al. Comparison of 18FDG-PET with 131–Iodine and 99mTc-seatamibi scintigraphy in differentiated thyroid cancer. Thyroid. 1997; 7: 327335.

    Google Scholar 

  99. Feine U, Lietzenmauer R, Hanke J, Held J, Wohrle H. Fluorine-18–FDG and iodine-131 uptake in thyroid cancer. J Nucl Med. 1996; 37: 1468–1472.

    PubMed  CAS  Google Scholar 

  100. van Tol K, Jager P, Dullaart R, Links T. Follow-up in patients with differentiated thyroid carcinoma with positive 18F-fluoro-2–deoxy-D-glucose-positron emission tomography results, elevated thyroglobulin levels, and negative high-dose 131–post-treatment whole body scan. J Clin Endocrinol Metab. 2000; 85: 2082–2083.

    PubMed  Google Scholar 

  101. Boerner A, Voth E, Theissen P, Wienhard K, Schicha H. Glucose metabolism of the thyroid in autonomous goiter measured by F-18–FDG-PET. Exp Clin Endocrinol Diabetes. 2000; 108: 191–196.

    PubMed  CAS  Google Scholar 

  102. Boerner A, Voth E, Theissen P, et al. Glucose metabolism of the thyroid in Graves’ disease measured by F-18 fluoro-deoxyglucose positron emission tomography. Thyroid. 1998; 8: 765–772.

    PubMed  CAS  Google Scholar 

  103. Yasuda S, Shohtsu A, Ide M, et al. Chronic thyroiditis: Diffuse uptake of FDG at PET. Radiology. 1998; 207: 775–778.

    PubMed  CAS  Google Scholar 

  104. Wang W, Larson SM, Fazzari M, et al. Prognostic value of 18F fluorodeoxyglucose positron emission tomography scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000; 85: 1107–1113.

    PubMed  CAS  Google Scholar 

  105. Giovannucci E, Stampfer M, Colditz G. Relationship of diet to risk of colorectal cancer. J Natl Cancer Inst. 1992; 84: 91.

    PubMed  CAS  Google Scholar 

  106. Ujszaszy L, Pronay G, Nagy G. Screening for colorectal cancer in a Hungarian county. Endoscopy. 1985; 17: 109.

    PubMed  CAS  Google Scholar 

  107. Falk P, Gupta N, Thorson A, et al. positron emission tomography for pre-operative staging of colorectal carcinoma. Dis Colon Rectum. 1994; 37: 153–156.

    PubMed  CAS  Google Scholar 

  108. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998; 206: 755–760.

    PubMed  CAS  Google Scholar 

  109. Meyer M. Diffusely increased colonic F-18 FDG uptake in acute enterocolitis. Clin Nucl Med. 1995; 20: 434–435.

    PubMed  CAS  Google Scholar 

  110. Hannah A, Scott AM, Akhurst T, et al. Abnormal colonic accumulation of fluorine-18FDG in pseudomembranous colitis. J Nucl Med. 1996; 37: 1683–1685.

    PubMed  CAS  Google Scholar 

  111. Miraldi F, Vesselle H, Faulhaber PF, Adler LP, Leisure GP. Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med. 1998; 23: 3–7.

    PubMed  CAS  Google Scholar 

  112. Strauss L, Clorius J, Schlag P, et al. Recurrence of colorectal tumors: PET evaluation. Radiology. 1989; 170: 329–332.

    PubMed  CAS  Google Scholar 

  113. Schiepers C, Penninckx F, De Vadder N, et al. Contribution of PET in the diagnosis of

    Google Scholar 

  114. recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol. 1995;21:517–522.

    Google Scholar 

  115. Delbeke D, Vitola JV, Sandler MP, et al. Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med. 1997; 38: 1196–1201.

    PubMed  CAS  Google Scholar 

  116. Vitola JV, Delbeke D, Sandler MP, et al. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg. 1996; 171: 21–26.

    PubMed  CAS  Google Scholar 

  117. Ito K, Kato T, Ohta T, et al. Fluorine-18 fluoro-2–deoxyglucose positron emission tomography in recurrent rectal cancer: relation to tumour size and cellularity. Eur J Nucl Med. 1996; 23: 1372–1377.

    PubMed  CAS  Google Scholar 

  118. Flanagan FL, Dehdashti F, Ogunbiyi OA, Kodner IJ, Siegel BA. Utility of FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. Ann Surg. 1998; 227: 319–323.

    PubMed  CAS  Google Scholar 

  119. Huebner R, Park K, Shepherd J, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000; 41: 1177–1189.

    PubMed  CAS  Google Scholar 

  120. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med. 1991; 32: 1485–1490.

    PubMed  CAS  Google Scholar 

  121. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996; 14: 700–708.

    PubMed  CAS  Google Scholar 

  122. Bender H, Bangard N, Metten N, et al. Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma. 1999; 18: 87–91.

    PubMed  CAS  Google Scholar 

  123. Vitola JV, Delbeke D, Meranze SG, Mazer MJ, Pinson CW. Positron emission tomography with F-18–fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer. 1996; 78: 2216–2222.

    PubMed  CAS  Google Scholar 

  124. Dimitrakopoulou A, Strauss LG, Clorius JH, et al. Studies with positron emission tomography after systemic administration of flourine-18–uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med. 1993; 34: 1075–1081.

    PubMed  CAS  Google Scholar 

  125. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Fluorine-18–fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med. 1998; 39: 1197–1202.

    PubMed  CAS  Google Scholar 

  126. Kissel J, Brix G, Bellemann ME, et al. Pharmacokinetic analysis of 5–[18F] fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res. 1997; 57: 3415–3423.

    PubMed  CAS  Google Scholar 

  127. Fong Y, Saldinger P, Akhurst T, et al. Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg. 1999; 178: 282–287.

    PubMed  CAS  Google Scholar 

  128. Lai DT, Fulham M, Stephen MS, et al. The role of whole-body positron emission tomography with [18F] fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg. 1996; 131: 703–707.

    PubMed  CAS  Google Scholar 

  129. Valk P, Abella-Columna E, Haseman M, et al. Whole-body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg. 1999; 134: 503–11.

    PubMed  CAS  Google Scholar 

  130. Flamen P, Stroobants S, Van Cutsem E, et al. Additional value of whole-body positron emission tomography with fluorine-18–2–fluoro-2–deoxy-D-glucose in recurrent colorectal cancer. J Clin Oncol. 1999; 17: 894–901.

    PubMed  CAS  Google Scholar 

  131. Meta J, Seltzer MA, Schiepers C, et al. Impact of 18F-FDG PET on managing patients with colorectal cancer: the referring physician’s perspective. J Nucl Med. 2001; 42: 586590.

    Google Scholar 

  132. Day N, Varghese C. Esophageal cancer. Cancer Surv. 1994; 20: 43–54.

    Google Scholar 

  133. Greenlee R, Murray T, Bolden S, Wingo P. Cancer statistics, 2000. CA Cancer J Clin. 2000; 50: 7.

    PubMed  CAS  Google Scholar 

  134. Blot W, Devesa S, Kneller R, Fraumeni R. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. /AMA. 1991; 265: 1287–1289.

    CAS  Google Scholar 

  135. Rankin S. Esophageal cancer. In: Husband J, Reznek RH, eds. Imaging in Oncology. Oxford: Isis Medical Media; 1998: 93–110.

    Google Scholar 

  136. Botet J, Lightdale C, Zauber A. Preoperative staging of gastric cancer: comparison of endoscopic US and dynamic CT. Radiology. 1991; 181: 426–432.

    PubMed  CAS  Google Scholar 

  137. Lightdale C. Staging of esophageal cancer. I: Endoscopic ultrasonography. Semin Oncol. 1994; 21: 438–46.

    PubMed  CAS  Google Scholar 

  138. Souquet J, Napoleon B, Pujol B, et al. Endosonography-guided treatment of esophageal carcinoma. Endoscopy. 1992;24:Suppl 1: 324–328.

    Google Scholar 

  139. Chandawarkar R, Kakegawa T, Fujita H, Yamana H, Hayabuthi T. Comparative analysis of imaging modalities in the preoperative assessment of nodal metastasis in esophageal cancer. J Surg Oncol. 1996; 61: 214–217.

    PubMed  CAS  Google Scholar 

  140. Fok M, Law S, Stipa F, Cheng S, Wong J. A comparison of transhiatal and transthoracic resection for esophageal carcinoma. Endoscopy. 1993; 25: 660–663.

    PubMed  CAS  Google Scholar 

  141. Fukunaga T, Okazumi S, Koide Y, Imazeki K. Evaluation of esophageal cancers using fluorine-18 fluorodeoxyglucose PET. J Nucl Med. 1998; 39: 1002–1007.

    PubMed  CAS  Google Scholar 

  142. Flanagan F, Dedashti F, Siegel B, et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. Am JRoentgenol. 1997; 168: 417–424.

    CAS  Google Scholar 

  143. Block M, Patterson G, Sundaresan R. Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg. 1997; 64: 770–776.

    PubMed  CAS  Google Scholar 

  144. Kole A, Plukke RJ, Nieweg O, Vaalburg W. Positron emission tomography for staging of esophageal and gastroesophageal malignancy. Br J Cancer. 1998; 78: 521–527.

    PubMed  CAS  Google Scholar 

  145. Skehan S, Brown A, Thompson M, et al. Imaging features of primary and recurrent esophageal cancer at FDG-PET. Radiographics. 2000; 20: 713–723.

    PubMed  CAS  Google Scholar 

  146. Flamen P, Lerut A, Van Cutsem E, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg. 2000; 120: 1085–1092.

    PubMed  CAS  Google Scholar 

  147. Rankin S, Taylor H, Cook G, Mason R. Computed tomography and positron emission tomography in the pre-operative staging of esophageal carcinoma. Clin Radiol. 1998; 53: 659–665.

    PubMed  CAS  Google Scholar 

  148. Luketich J, Friedman D, Weigel T, et al. Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg. 1999; 68: 1133–1136.

    PubMed  CAS  Google Scholar 

  149. McAteer D, Wallis F, Couper G. Evaluation of 18F-FDG positron emission tomography in gastric and esophageal cancer.

    Google Scholar 

  150. Luketich J, Schauer P, Meltzer C, et al. Role of positron emission tomography in staging esophageal cancer. Ann Thorac Surg. 1997; 1997: 765–769.

    Google Scholar 

  151. Williamson R. Pancreatic cancer: the greatest oncological challenge. Br Med J. 1991; 296: 445–449.

    Google Scholar 

  152. Wingo P, Tong T, Bolden S. Cancer Statistics. CA Cancer J Clin. 1995; 45: 8.

    PubMed  CAS  Google Scholar 

  153. Nitecki S, Sarr M, Colvy T. Long-term survival after resection for ductal adenocarcinoma of the pancreas. Ann Surg. 1995; 221: 59–66.

    PubMed  CAS  Google Scholar 

  154. Warshaw A, Fernandez-Del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992; 326: 455–465.

    PubMed  CAS  Google Scholar 

  155. Reske S, Grillenberger K, Glatting G, et al. Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic cancer. J Nucl Med. 1997; 38: 1344–1348.

    PubMed  CAS  Google Scholar 

  156. Nakamoto Y, Higashi T, Sakahara H, et al. Delayed (18)F-fluoro-2–deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer. 2000; 84: 253–262.

    Google Scholar 

  157. Imdahl A, Nitzsche E, Krautmann F, et al. Evaluation of positron emission tomography with 2– [18F] fluoro-2–deoxy-D-glucose for the differentiation of chronic pancreatitis and pancreatic cancer. Br J Surg. 1999; 86: 194–199.

    PubMed  CAS  Google Scholar 

  158. Stollfuss J, Glatting G, Friess H, et al. 2–(fluorine-18)-fluoro-2–deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology. 1995; 195: 339–344.

    PubMed  CAS  Google Scholar 

  159. Sendler A, Avril N, Helmberger H, et al. Preoperative evaluation of pancreatic masses with positron emission tomography using 18F-fluorodeoxyglucose: diagnostic limitations. World J Surg. 2000; 24: 1121–1129.

    PubMed  CAS  Google Scholar 

  160. Zimny M, Bares R, Frass J, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med. 1997; 24: 678–682.

    PubMed  CAS  Google Scholar 

  161. Friess H, Langhans J, Ebert M, et al. Diagnosis of pancreatic cancer by 2 [18F1–fluoro-2deoxy-D-glucose positron emission tomography. Gut. 1995; 36: 771–777.

    PubMed  CAS  Google Scholar 

  162. Diederichs C, Staib L, Glatting G. Elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med. 1998; 39: 1030–1033.

    PubMed  CAS  Google Scholar 

  163. Fröhlich A, Diederichs C, Staib L, et al. Detection of liver metastases from pancreatic cancer using FDG-PET. I Nucl Med. 1999; 40: 250–255.

    Google Scholar 

  164. Mertz H, Sechopoulos P, Delbeke D, Leach S. EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. Gastrointest Endosc. 2000; 52: 367–371.

    PubMed  CAS  Google Scholar 

  165. Rose D, Delbeke D, Beauchamp R, et al. 18Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg. 1999; 229: 729–737.

    PubMed  CAS  Google Scholar 

  166. Maisey N, Webb A, Flux G, et al. FDG-PET prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer. 2000; 83: 287–293.

    PubMed  CAS  Google Scholar 

  167. Zimny M, Fass J, Bares R, et al. Fluorodeoxyglucose positron emission tomography and the prognosis of pancreatic cancer. Scand J Gastroenterol. 2000; 35: 883–888.

    PubMed  CAS  Google Scholar 

  168. Landis S, Marray T, Bolden S, Wingo P. Cancer Statistics 1999. CA: Cancer J Clin. 1999; 49: 8–31.

    CAS  Google Scholar 

  169. Devesa S, Fears T. Non-Hodgkin’s lymphoma time trends: United States and international data. Cancer Res. 1992; 52: 5432S - 5439S.

    PubMed  CAS  Google Scholar 

  170. Newman J, Francis I, Kaminski M, Wahl RL. Imaging of lymphoma with PET with 2[F-18]-fluoro-2–deoxy-D-glucose: Correlation with CT. Radiology. 1994; 190: 111–116.

    PubMed  CAS  Google Scholar 

  171. Lapela M, Leskinen S, Minn H, et al. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18–fluorodeoxyglucose. Blood. 1995; 9: 3522–3527.

    Google Scholar 

  172. Okada J, Yoshikawa K, Imazeki K, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med. 1991; 32: 686–691.

    PubMed  CAS  Google Scholar 

  173. Patlak C, Blasberg R, Fenstermacher J. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983; 3: 1–7.

    PubMed  CAS  Google Scholar 

  174. Gjedde A, Wienhard K, Hess W. Comparative regional analysis of 2–fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab. 1985; 5: 163–178.

    PubMed  CAS  Google Scholar 

  175. Okada J, Yoshikawa K, Itami M, et al. Positron emission tomography using fluorine-18fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med. 1992; 33: 325–329.

    PubMed  CAS  Google Scholar 

  176. Paul R. Comparison of fluorine-18–2–fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med. 1987; 28: 288–292.

    PubMed  CAS  Google Scholar 

  177. Hoh C, Glaspy J, Rosen P, et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and Lymphoma. J Nucl Med. 1997; 38: 343–348.

    PubMed  CAS  Google Scholar 

  178. Moog F, Kotzerke J, Reske S. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999; 40: 1407–1413.

    PubMed  CAS  Google Scholar 

  179. Stumpe K, Urbinelli M, Steinert H, et al. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med. 1998; 25: 721–728.

    PubMed  CAS  Google Scholar 

  180. Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999; 40: 1407–1413.

    PubMed  CAS  Google Scholar 

  181. Carr R, Barrington S, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998; 91: 3340–3346.

    PubMed  CAS  Google Scholar 

  182. Jerusalem G, Beguin Y, Fasotte M, et al. Whole body positron emission tomography using 18 F-fluorodeoxyglucose for post-treatment evaluation in Hodgkin’s disease and non-Hodgkin’s Lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood. 1999; 94: 429–433.

    PubMed  CAS  Google Scholar 

  183. Spaepen K, Stoobants S, Dupont P, et al. Prognostic value of positron emission tomography with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first line chemotherapy in non-Hodgkin’s lymphoma: Is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001; 19: 414–419.

    PubMed  CAS  Google Scholar 

  184. Zinzani P, Magagnoli M, Chierichetti F, et al. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol. 1999; 10: 1181–1184.

    PubMed  CAS  Google Scholar 

  185. de Witt M, Bumann D, Herbst K, Clausen M, Hossfeld D. Whole body positron emission tomography for diagnosis of residual mass in patients with lymphoma. Ann Oncol. 1997; 8: 557–S60.

    Google Scholar 

  186. Römer W, Hanauske A, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: Assessment of chemotherapy with fluorodeoxyglucose. Blood. 1998; 91: 44644471.

    Google Scholar 

  187. Schöder H, Meta J, Yap C, et al. Effect of whole body 18F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. JNucl Med. 2001; 42: 1139–1134

    Google Scholar 

  188. Rigel D, Kopf A, Friedman R. The rate of malignant melanoma in the US: are we making an impact. JAm Acad Dermatol. 1987; 17: 1050–1055.

    CAS  Google Scholar 

  189. Lee Y. Malignant melanoma: patterns of metastasis. CA Cancer J Clin. 1980; 30: 137–141.

    CAS  Google Scholar 

  190. Schwimmer J, Essner R, Patel A, et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q J Nucl Med. 2000; 44: 153–167.

    CAS  Google Scholar 

  191. Rinne D, Baum R, Hör G, Kaufman R. Primary staging and follow up of high risk melanoma patients with whole body 18F-fluorodeoxyvglucose positron emission tomography. Cancer. 1998; 82: 1664–1671.

    PubMed  CAS  Google Scholar 

  192. Steinert HC, Huch RA, Buck A, et al. Malignant melanoma: staging with whole-body positron emission tomography and 2– [F-18] -fluoro-2–deoxy-D-glucose. Radiology. 1995; 195: 705–709.

    PubMed  CAS  Google Scholar 

  193. Macfarlane DJ, Sondak V, Johnson T, Wahl RL. Prospective evaluation of 2418F] -2–deoxy-D-glucose positron emission tomography in staging of regional lymph nodes in patients with cutaneous malignant melanoma. J Clinical Oncol. 1998; 16: 1770–1776.

    CAS  Google Scholar 

  194. Grippa F, Leutner M, Belli F, et al. Which kinds of lymph node metastases can FDG PET detect? A clinical study in melanoma. J Nucl Med. 2000; 41: 1491–1494.

    Google Scholar 

  195. Eigtved A, Andersson A, Dahlstrom K, et al. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma. Eur J Nucl Med. 2000; 27: 70–75.

    PubMed  CAS  Google Scholar 

  196. Jadvar H, Johnson D, Segall G. The effect of fluorine-18 fluorodeoxyglucose positron emission tomography on the management of cutaneous malignant melanoma. Clin Nucl Med. 2000; 25: 48–51.

    PubMed  CAS  Google Scholar 

  197. Wong C, Silverman DH, Seltzer M, et al. The impact of 2–Deoxy-2 [18F] fluoro-D-glucose whole body positron emission tomography for managing patients with melanoma: The referring physcian’s perspective. Mol Imag Biol 2002; 4: 185–190.

    Google Scholar 

  198. Rosenberg R, Hunt W, Williamson M, et al. Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology. 1998; 209.

    Google Scholar 

  199. Mandelson M, Oestreicher N, Porter P, et al. Breast density as a predictor of mammographic detection: Comparison of interval and screen-detected cancers. J Natl Cancer Inst. 2000; 92: 1081–1087.

    PubMed  CAS  Google Scholar 

  200. Orsi C. The American College of Radiology Mammography Lexicon: an initial attempt to standardize terminology. AJR. 1996; 166: 779–780.

    PubMed  Google Scholar 

  201. Foxcroft L, Evans E, Joshua H, Hirst C. Breast Cancer invisible on mammography. Aust N Z J Surg. 2000; 70: 162–167.

    PubMed  CAS  Google Scholar 

  202. Wolfe J. Breast patterns as an index of risk for developing breast cancer. Am J Roentgenol. 1976; 126: 1130–1139.

    CAS  Google Scholar 

  203. Boyd N, Lockwood G, Byng J, Tritchler D, Yaffe M. Mamographic breast densities and breast cancer risk. Cancer Epidemiol, Biomarkers Prey. 1998; 7: 1133–1144.

    CAS  Google Scholar 

  204. Bird R, Wallace T, Yankaskas B. Analysis of cancers missed at screening mammography. Radiology. 1992; 184: 613–617.

    PubMed  CAS  Google Scholar 

  205. Orel S, Kay N, Reynolds C, Sullivan D. BI-RADS categorization as a predictor of malignancy. Radiology. 1999; 211: 845–850.

    PubMed  CAS  Google Scholar 

  206. Cyrlak D. Induced costs of low-cost screening mammography. Radiology. 1988: 661–663.

    Google Scholar 

  207. Avril N, Rose M, Schelling M, et al. Breast imaging with fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000; 18: 3495–3502.

    PubMed  CAS  Google Scholar 

  208. Grippa F, Seregeni E, Agresti R, et al. Association between [18F] fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labeling in-

    Google Scholar 

  209. dex and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med. 1998;25:1429–1434.

    Google Scholar 

  210. Schirrmeister H, Kühn T, Guhlman A, et al. Fluorine-18 2–deoxy-2–fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med. 2001; 28: 351–358.

    PubMed  CAS  Google Scholar 

  211. Yutani K, Shiba E, Tatsumi M, et al. Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis. J Comp Assist Tomogr. 2000; 24: 274–280.

    CAS  Google Scholar 

  212. Rostom A, Powe J, Kandil A, et al. Positron emission tomography in breast cancer: a clinicopathological correlation of results. Br J Radiol. 1999; 72: 1064–1068.

    PubMed  CAS  Google Scholar 

  213. Noh D, Yun I, Kang H, et al. Detection of cancer in augmented breasts by positron emission tomography. Eur J Surg. 1999; 165: 847–851.

    PubMed  CAS  Google Scholar 

  214. Scheidhauer K, Scharl A, Pietrzyk U, et al. Qualitative [18E1 FDG positron emission tomography in primary breast cancer: clinical relevance and practicability. Eur J Nucl Med. 1996; 23: 618–623.

    PubMed  CAS  Google Scholar 

  215. Adler L, Crowe J, al-Kaisi NK, Sunshine J. Evaluation of breast masses and axillary lymph nodes with [F-18] 2 deoxy-2–fluoro-D-glucose PET. Radiology. 1993; 187: 743–750.

    PubMed  CAS  Google Scholar 

  216. Kubota K, Matsuzawa T, Amemiya A, et al. Imaging of breast cancer with [f18]Fluorodeoxyglucose and positron emission tomography. J Comput Asst Tomogr. 1989; 13: 1097.

    CAS  Google Scholar 

  217. Wahl R, Cody R, Hutchins G, Mudgett E. Primary and metastatic breast carcinoma: initial clinical evaluation with the radiolabeled glucose analogue 2–[F-18]-fluoro-2–deoxyD-glucose. Radiology. 1991; 179: 765–770.

    PubMed  CAS  Google Scholar 

  218. Tse N, Hoh C, Hawkins R, et al. The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease. Ann Surg. 1992; 7: 2734.

    Google Scholar 

  219. Nieweg O, Kim E, Wong W, et al. Positron emission tomography with fluorine-18–deoxyglucose in the detection and staging of breast cancer. Cancer. 1993; 71: 3920–3925.

    PubMed  CAS  Google Scholar 

  220. Utech C, Young C, Winter P. Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med. 1996; 23: 1588–1593.

    PubMed  CAS  Google Scholar 

  221. Bassa P, Kim E, Inoue T, Wong F, et al. Evaluation of pre-operative chemotherapy using PET with fluorine-l8–fluorodeoxyglucose in breast cancer. J Nucl Med. 1996; 37: 931–938.

    PubMed  CAS  Google Scholar 

  222. Noh D, Yun I, Kim S, et al. Diagnostic value of positron emission tomography for detecting breast cancer. World J Surg. 1998; 22: 223–228.

    PubMed  CAS  Google Scholar 

  223. Wahl RL, Helvie M, Chang A, Andersson I. Detection of breast cancer in women after augmentation mammoplasty using fluorine-18–fluorodeoxyglucose-PET. J Nucl Med. 1994; 35: 872–875.

    PubMed  CAS  Google Scholar 

  224. Boerner A, Weckesser M, Herzog H, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur JNucl Med. 1999; 26: 226–230.

    CAS  Google Scholar 

  225. Yutani K, Tatsumi M, Uehara T, Nishimura T. Effect of patients’ being prone during FDG PET for the diagnosis of breast cancer. AJR. 1999; 173: 1337–1339.

    PubMed  CAS  Google Scholar 

  226. Bleckmann C, Dose J, Bohuslavizki K, et al. Effect of attenuation correction on lesion detectability in FDG PET of breast cancer. J Nucl Med. 1999; 40: 2021–2024.

    PubMed  CAS  Google Scholar 

  227. Greco M, Crippa F, Agresti R, et al. Axillary lymph node staging in breast cancer by 2fluoro-2–deoxy-D-glucose-positron emission tomography: clinical evaluation and alternative management. J Natl Cancer Inst. 2001; 93: 630–637.

    PubMed  CAS  Google Scholar 

  228. Ohta M, Tokuda Y, Saitoh Y. Comparative efficacy of positron emission tomography and ultrasonography in preoperative evaluation of axillary lymph node metastases in breast cancer. Breast Cancer. 2000; 7: 99–103.

    PubMed  CAS  Google Scholar 

  229. Crippa F, Agresti R, Seregni E, et al. Prospective evaluation of fluorine-18–FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med. 1998; 39: 4–8.

    PubMed  CAS  Google Scholar 

  230. Smith I, Welch A, Hutcheon A, et al. Positron emission tomography using [18F] -fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000; 18: 1676–1688.

    PubMed  CAS  Google Scholar 

  231. Adler L, Faulhaber P, Schnur K, Al-Kasai N, Shenk R. Axillary lymph node metastases: screening with [F-18]2 deoxy-2–D-glucose (FDG) PET. Radiology. 1997; 203: 323–327.

    PubMed  CAS  Google Scholar 

  232. Grippa F, Agresti R, Delle Donne V, et al. The contribution of positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) in the pre-operative detection of axillary metastases of breast cancer: the experience of the national cancer institute of Milan. Tumori. 1997; 83: 542–543.

    Google Scholar 

  233. Smith I, Ogston K, Whitford P, et al. Staging of the axilla in breast cancer: accurate in vivo assessment using positron emission tomography with 2–(fluorine-18)-fliuoro-2–deoxy-D-glucose. Ann Surg. 1998; 228: 220–227.

    PubMed  CAS  Google Scholar 

  234. Vranjesevic D, Filmont JE, Meta J, et al. Whole body 18F-FDG PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med. 2002; 43: 325–329.

    PubMed  Google Scholar 

  235. Wahl RL, Zasadny KR, Helvie M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993; 11: 2101–2111.

    PubMed  CAS  Google Scholar 

  236. Bruce D, Evans N, Heys S, H, et al. Positron emission tomography: 2–deoxy-2–[18F]fluoro-D-glucose uptake in locally advanced breast cancers. Eur J Surg Oncol. 1995; 21: 280–283.

    PubMed  CAS  Google Scholar 

  237. Dehdashti F, Flanagan FL, Mortimer J, et al. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to anti-estrogen therapy. Eur J Nucl Med. 1998; 26: 51–56.

    Google Scholar 

  238. Schelling M, Avril N, Nährig J, et al. Positron emission tomography using [18F] fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000; 18: 1689–1695.

    PubMed  CAS  Google Scholar 

  239. Yap CS, Valk P, Seltzer M, et al. Impact of whole body 18F-FDG PET on staging and imaging patients with breast cancer: the referring physician’s perspective. J Nucl Med. 2002; 42: 1334–1337.

    Google Scholar 

  240. Greco A, Hainsworth J. Cancer of unknown primary site. In: DeVita V, Hellman S, Rosenberg S, eds. Cancer: Principles liu Practice of Oncology. Philadelphia: Lippincott-Raven Publishers; 1997, pp 2423–2444.

    Google Scholar 

  241. Braams J, Pruim J, Kole A, et al. Detection of unknown primary head and neck tumors by positron emission tomography. Int J Oral Maxillofac Surg. 1997; 26: 112–115.

    PubMed  CAS  Google Scholar 

  242. Jungehülsing M, Scheidhauer K, Damm M, et al. 2[F]-fluoro-2–deoxy-D-glucose positron emission tomography is a sensitive tool for the detection of occult primary cancer (carcinoma of unknown primary syndrome) with head and neck lymph node manifestation. Otolaryngol-Head Neck Surg. 2000; 123: 294–301.

    PubMed  Google Scholar 

  243. Kole AC, Nieweg 0E, Pruim J, et al. Detection of unknown occult primary tumors using positron emission tomography. Cancer. 1998; 82: 1160–1166.

    PubMed  CAS  Google Scholar 

  244. Safa A, Tran L, Rege S, et al. The role of positron emission tomography in occult primary head and neck cancers. Cancer J Sci Am. 1999; 5: 214–218.

    CAS  Google Scholar 

  245. Bohuslavizki K, Klutmann S, Kröger S, et al. FDG PET detection of unknown primary tumors. J Nucl Med. 2000; 41: 816–822.

    PubMed  CAS  Google Scholar 

  246. Greven K, Keyes J, Williams D, McGuirt W, Joyce W. Occult primary tumors of the head and neck: lack of benefit from positron emission tomography imaging with 2– [F-18] fluoro-2 -deoxy-D -glucose. Cancer. 1999; 86: 114–118.

    PubMed  CAS  Google Scholar 

  247. Parker W, Levine R, Howard F, Sansone B, Berek J. A multicenter study of laparoscopic management of selected cystic adnexal masses in postmenopausal women. J Am Coll Surg. 1994; 179: 733–737.

    PubMed  CAS  Google Scholar 

  248. Shalev E, Eliyahu S, Peleg D, Tsabari A. Laparoscopic management of adnexal cystic masses in postmenopausal women. Obstet Gynecol. 1994; 83: 594–596.

    PubMed  CAS  Google Scholar 

  249. Bromley B, Goodman H, Benacerraf B. Comparison between sonographic morphology and Doppler waveform for the diagnosis of ovarian malignancy. Obstet Gynecol. 1994; 83: 434–437.

    PubMed  CAS  Google Scholar 

  250. Fenchel S, Kotzerke J, Stöhr I, et al. Preoperative assessment of asymptomatic adnexal tumors by positron emission tomography and F 18 fluorodeoxyglucose. Nuklearmedizin. 1999; 38: 101–107.

    PubMed  CAS  Google Scholar 

  251. Grab D, Flock F, Stöhr I, et al. Classification of asymptomatic pelvic masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol On-col. 2000; 77: 454–459.

    CAS  Google Scholar 

  252. Kubich-Huch R, D61–filer W, von Schulthess G, et al. Value of (18F)-FDG positron emis-

    Google Scholar 

  253. sion tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur Radiol. 2000; 10: 761–767.

    Google Scholar 

  254. Zimny M, Schröder W, Wolters S, et al. [18F-fluorodeoxyglucose PET in ovarian carcinoma: methodology and preliminary results]. Nuklearmedizin. 1997; 36: 228–233.

    PubMed  CAS  Google Scholar 

  255. Römer W, Avril N, Dose J, et al. Metabolic characterization of ovarian tumors with positron-emission tomography and F-18 fluorodeoxyglucose. Rofo. 1997; 166: 62–68.

    PubMed  Google Scholar 

  256. Hubner K, McDonald T, Niethammer J, et al. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2–[18F] deoxyglucose (2– [18F] FDG). Gynecol Oncol. 1993; 51: 197–204.

    PubMed  CAS  Google Scholar 

  257. Bachor R, Kotzerke J, Gottfried H, et al. Positron emission tomography in diagnosis of renal cell carcinoma. Urologe; Ausgabe A. 1996; 35: 146–150.

    CAS  Google Scholar 

  258. Goldberg M, Mayo-Smith W, Papanicolaou N, Fischman A, Lee M. FDG PET characterization of renal masses: preliminary experience. Clin Radiol. 1997; 52: 510–515.

    PubMed  CAS  Google Scholar 

  259. Montravers F, Grahek D, Kerrou K, et al. Evaluation of FDG uptake by renal malignancies (primary tumor or metastases) using a coincidence detection gamma camera. J Nucl Med. 2000; 41: 78–84.

    PubMed  CAS  Google Scholar 

  260. Miyauchi T, Brown R, Grossman H, Wojno K, Wahl R. Correlation between visualization of primary renal cancer by FDG-PET. J Nucl Med. 1996;37 Supp1:64P.

    Google Scholar 

  261. Kocher F, Grimmel S, Hautmann R, Reske S. Positron emission tomography. Introduction of a new procedure in diagnosis of urologic tumors and initial clinical results. J Nucl Med. 1994; 35: 223 P.

    Google Scholar 

  262. Safaei A, Figlin R, Hoh C, et al. The Usefulness of F-18 deoxyglucose whole body Positron Emission Tomography (PET) for re-staging of renal cell cancer. Clin Nephrol. 2002; 57: 56–62.

    PubMed  CAS  Google Scholar 

  263. Bosl G, Sheinfeld J, Bajorin D, Motzer R. Cancer of the testis. In: DeVita V, Hellman S, Rosenberg S, eds. Principles b Practice of Oncology. Philadelphia: Lippincott-Raven; 1997, pp 1397–1425.

    Google Scholar 

  264. Gatti J, Stephenson R. Staging of testis cancer: combining serum markers, histologic parameters and radiographic imaging. Urol Clin North Am. 1998; 25: 397–403.

    CAS  Google Scholar 

  265. Cremerius U, Wildberger H, Borchers H, et al. Does positron emission tomography using 18–fluoro-2–deoxyglucose improve clinical staging of testicular cancer?-Results of a study in 50 patients. Urology. 1999; 54: 900–904.

    PubMed  CAS  Google Scholar 

  266. Cremerius U, Effert P, Adam G, et al. FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med. 1998; 39: 815–822.

    PubMed  CAS  Google Scholar 

  267. Müller-Mattheis V, Reinhardt M, Gerharz C, et al. Positron emission tomography with [18F] -2–fluoro-2–deoxy-D-glucose (18FDG-PET) in diagnosis of retroperitoneal lymph node metastases of testicular tumors. Urologe Ausgabe A. 1998; 37: 609–620.

    Google Scholar 

  268. Hain S, O’Doherty M, Timothy AR, et al. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer. 2000; 83: 863–869.

    PubMed  CAS  Google Scholar 

  269. Albers P, Bender H, Yilmaz H, et al. Positron emission tomography in the clinical staging of patients with Stage I and Stage II testicular germ cell tumors. Urology. 1999; 53: 808–811.

    PubMed  CAS  Google Scholar 

  270. Effert P, Bares R, Handt S, et al. metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol. 1996; 155: 994–998.

    PubMed  CAS  Google Scholar 

  271. Liu J, Zafar M, Lai Y, Segall G, Terris M. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ confined prostate cancer. Urology. 2001; 57: 108–111.

    PubMed  CAS  Google Scholar 

  272. Shreve P, Grossmann H, Gross M, Wahl R. Metastatic prostate cancer: initial findings of PET with 2–deoxy-2–[F-18] fluoro-D-glucose. Radiology. 1996; 199: 751.

    PubMed  CAS  Google Scholar 

  273. Yeh S, Imbriaco M, Larson S, et al. Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol. 1996; 23: 693–697.

    PubMed  CAS  Google Scholar 

  274. Seltzer M, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol. 1999; 162: 1322–1328.

    PubMed  CAS  Google Scholar 

  275. DeGrado T, Coleman R, Wang S, et al. Synthesis and evaluation of18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2001; 6: 110–117.

    Google Scholar 

  276. Shields A, Grierson J, Dohmen B, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature Med. 1998; 4: 1334–1336.

    PubMed  CAS  Google Scholar 

  277. Shields A, Mankoff D, Link J, et al. Carbon-11–thymidine and FDG to measure therapy response. J Nucl Med. 1998; 39: 1757–1762.

    PubMed  CAS  Google Scholar 

  278. Tjuvajev J, Chen S, Joshi A, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res. 1999; 59: 5186–5193.

    PubMed  CAS  Google Scholar 

  279. Gambhir S, Barrio J, Wu L, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med. 1998; 39: 2003–2011.

    PubMed  CAS  Google Scholar 

  280. MacLaren D, Toyokuni T, Cherry S, et al. PET imaging of transgene expression. Biol Psychiat. 2000; 48: 337–348.

    PubMed  CAS  Google Scholar 

  281. Gambhir S, Herschman H, Cherry S, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia. 2000; 2: 118–138.

    PubMed  CAS  Google Scholar 

  282. Chatziioannou A, Cherry S, Shao Y, et al. Performance evaluation of microPET: a high resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999; 40: 1164–1175.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Czernin, J. (2004). Oncological Applications of FDG-PET. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics